These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 33405600)
1. Printability and Cell Viability in Bioprinting Alginate Dialdehyde-Gelatin Scaffolds. Soltan N; Ning L; Mohabatpour F; Papagerakis P; Chen X ACS Biomater Sci Eng; 2019 Jun; 5(6):2976-2987. PubMed ID: 33405600 [TBL] [Abstract][Full Text] [Related]
2. 3D bioprinting of multifunctional alginate dialdehyde (ADA)-gelatin (GEL) (ADA-GEL) hydrogels incorporating ferulic acid. Bider F; Miola M; Clejanu CE; Götzelmann J; Kuth S; Vernè E; Basu B; Boccaccini AR Int J Biol Macromol; 2024 Feb; 257(Pt 2):128449. PubMed ID: 38029911 [TBL] [Abstract][Full Text] [Related]
3. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Kim MH; Lee YW; Jung WK; Oh J; Nam SY J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328 [TBL] [Abstract][Full Text] [Related]
4. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429 [TBL] [Abstract][Full Text] [Related]
5. Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding. Li H; Tan YJ; Liu S; Li L ACS Appl Mater Interfaces; 2018 Apr; 10(13):11164-11174. PubMed ID: 29517901 [TBL] [Abstract][Full Text] [Related]
6. Development of alginate dialdehyde-gelatin based bioink with methylcellulose for improving printability. Reakasame S; Dranseikiene D; Schrüfer S; Zheng K; Schubert DW; Boccaccini AR Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112336. PubMed ID: 34474887 [TBL] [Abstract][Full Text] [Related]
7. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
8. Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications. Naghieh S; Sarker MD; Abelseth E; Chen X J Mech Behav Biomed Mater; 2019 May; 93():183-193. PubMed ID: 30802775 [TBL] [Abstract][Full Text] [Related]
9. Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach. Gao T; Gillispie GJ; Copus JS; Pr AK; Seol YJ; Atala A; Yoo JJ; Lee SJ Biofabrication; 2018 Jun; 10(3):034106. PubMed ID: 29923501 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional printing of cell-laden microporous constructs using blended bioinks. Somasekhar L; Huynh ND; Vecheck A; Kishore V; Bashur CA; Mitra K J Biomed Mater Res A; 2022 Mar; 110(3):535-546. PubMed ID: 34486214 [TBL] [Abstract][Full Text] [Related]
11. 3D printing and characterization of human nasoseptal chondrocytes laden dual crosslinked oxidized alginate-gelatin hydrogels for cartilage repair approaches. Schwarz S; Kuth S; Distler T; Gögele C; Stölzel K; Detsch R; Boccaccini AR; Schulze-Tanzil G Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111189. PubMed ID: 32806255 [TBL] [Abstract][Full Text] [Related]
12. Printability, Durability, Contractility and Vascular Network Formation in 3D Bioprinted Cardiac Endothelial Cells Using Alginate-Gelatin Hydrogels. Roche CD; Sharma P; Ashton AW; Jackson C; Xue M; Gentile C Front Bioeng Biotechnol; 2021; 9():636257. PubMed ID: 33748085 [TBL] [Abstract][Full Text] [Related]
13. 3D-bioprinting of aortic valve interstitial cells: impact of hydrogel and printing parameters on cell viability. Immohr MB; Dos Santos Adrego F; Teichert HL; Schmidt V; Sugimura Y; Bauer S; Barth M; Lichtenberg A; Akhyari P Biomed Mater; 2022 Nov; 18(1):. PubMed ID: 36322974 [TBL] [Abstract][Full Text] [Related]
14. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels. Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330 [TBL] [Abstract][Full Text] [Related]
15. Assessment of hydrogels for bioprinting of endothelial cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2018 Apr; 106(4):935-947. PubMed ID: 29119674 [TBL] [Abstract][Full Text] [Related]
17. Cell-laden alginate dialdehyde-gelatin hydrogels formed in 3D printed sacrificial gel. Dranseikiene D; Schrüfer S; Schubert DW; Reakasame S; Boccaccini AR J Mater Sci Mater Med; 2020 Mar; 31(3):31. PubMed ID: 32152812 [TBL] [Abstract][Full Text] [Related]
18. 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications. Ning L; Sun H; Lelong T; Guilloteau R; Zhu N; Schreyer DJ; Chen X Biofabrication; 2018 Jun; 10(3):035014. PubMed ID: 29911990 [TBL] [Abstract][Full Text] [Related]
19. Optimization of 3D printing and Ketabat F; Maris T; Duan X; Yazdanpanah Z; Kelly ME; Badea I; Chen X Front Bioeng Biotechnol; 2023; 11():1161804. PubMed ID: 37304145 [No Abstract] [Full Text] [Related]
20. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]