These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33405602)

  • 1. Dynamic Hydrogels and Polymers as Inks for Three-Dimensional Printing.
    Heidarian P; Kouzani AZ; Kaynak A; Paulino M; Nasri-Nasrabadi B
    ACS Biomater Sci Eng; 2019 Jun; 5(6):2688-2707. PubMed ID: 33405602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels.
    Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing of dynamic tissue scaffold by combining self-healing hydrogel and self-healing ferrogel.
    Choi Y; Kim C; Kim HS; Moon C; Lee KY
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112108. PubMed ID: 34543778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histidine-Triggered GO Hybrid Hydrogels for Microfluidic 3D Printing.
    Ding X; Yu Y; Shang L; Zhao Y
    ACS Nano; 2022 Nov; 16(11):19533-19542. PubMed ID: 36269119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printing of Self-Assembling Nanofibrous Multidomain Peptide Hydrogels.
    Farsheed AC; Thomas AJ; Pogostin BH; Hartgerink JD
    Adv Mater; 2023 Mar; 35(11):e2210378. PubMed ID: 36604310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
    Kumar A; I Matari IA; Han SS
    Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review.
    Distler T; Boccaccini AR
    Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smart and Biomimetic 3D and 4D Printed Composite Hydrogels: Opportunities for Different Biomedical Applications.
    Malekmohammadi S; Sedghi Aminabad N; Sabzi A; Zarebkohan A; Razavi M; Vosough M; Bodaghi M; Maleki H
    Biomedicines; 2021 Oct; 9(11):. PubMed ID: 34829766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing of Supramolecular Polymer Hydrogels with Hierarchical Structure.
    Sather NA; Sai H; Sasselli IR; Sato K; Ji W; Synatschke CV; Zambrotta RT; Edelbrock JF; Kohlmeyer RR; Hardin JO; Berrigan JD; Durstock MF; Mirau P; Stupp SI
    Small; 2021 Feb; 17(5):e2005743. PubMed ID: 33448102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing and Properties of Chitosan Inks for 3D Printing of Hydrogel Microstructures.
    Wu Q; Therriault D; Heuzey MC
    ACS Biomater Sci Eng; 2018 Jul; 4(7):2643-2652. PubMed ID: 33435127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Bioprinting of Cell-Laden Constructs Using Polysaccharide-Based Self-Healing Hydrogels.
    Kim SW; Kim DY; Roh HH; Kim HS; Lee JW; Lee KY
    Biomacromolecules; 2019 May; 20(5):1860-1866. PubMed ID: 30912929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Hydrogel Materials for Biomedical Applications.
    Yang JM; Olanrele OS; Zhang X; Hsu CC
    Adv Exp Med Biol; 2018; 1077():197-224. PubMed ID: 30357691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printed architected conducting polymer hydrogels.
    Jordan RS; Frye J; Hernandez V; Prado I; Giglio A; Abbasizadeh N; Flores-Martinez M; Shirzad K; Xu B; Hill IM; Wang Y
    J Mater Chem B; 2021 Sep; 9(35):7258-7270. PubMed ID: 34105592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Design of Mussel-Inspired Hydrogels with Dynamic Catecholato-Metal Coordination Bonds.
    Heidarian P; Kouzani AZ; Kaynak A; Bahrami B; Paulino M; Nasri-Nasrabadi B; Varley RJ
    Macromol Rapid Commun; 2020 Dec; 41(23):e2000439. PubMed ID: 33174274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing Materials for Soft Robotics.
    Sachyani Keneth E; Kamyshny A; Totaro M; Beccai L; Magdassi S
    Adv Mater; 2021 May; 33(19):e2003387. PubMed ID: 33164255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks.
    Yuk H; Zhao X
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29239049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and fabrication strategies of cellulose nanocrystal-based hydrogel and its highlighted application using 3D printing: A review.
    He X; Lu Q
    Carbohydr Polym; 2023 Feb; 301(Pt B):120351. PubMed ID: 36446511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities.
    Bercea M
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35745941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic plant-derived polysaccharide-based hydrogels.
    Heidarian P; Kouzani AZ; Kaynak A; Paulino M; Nasri-Nasrabadi B; Zolfagharian A; Varley R
    Carbohydr Polym; 2020 Mar; 231():115743. PubMed ID: 31888824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.