These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 33405602)

  • 21. Functional Polymers and Nanocomposites for 3D Printing of Smart Structures and Devices.
    Nadgorny M; Ameli A
    ACS Appl Mater Interfaces; 2018 May; 10(21):17489-17507. PubMed ID: 29742896
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Four-Dimensional Printing of Stimuli-Responsive Hydrogel-Based Soft Robots.
    Lee Y; Choi J; Choi Y; Park SM; Yoon C
    J Vis Exp; 2023 Jan; (191):. PubMed ID: 36715416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designing Biomaterials for 3D Printing.
    Guvendiren M; Molde J; Soares RM; Kohn J
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1679-1693. PubMed ID: 28025653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery.
    Tran TS; Balu R; Mettu S; Roy Choudhury N; Dutta NK
    Pharmaceuticals (Basel); 2022 Oct; 15(10):. PubMed ID: 36297394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D bioprinting of complex channels within cell-laden hydrogels.
    Ji S; Almeida E; Guvendiren M
    Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct 3D Printing of Shear-Thinning Hydrogels into Self-Healing Hydrogels.
    Highley CB; Rodell CB; Burdick JA
    Adv Mater; 2015 Sep; 27(34):5075-9. PubMed ID: 26177925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advanced Polymer Designs for Direct-Ink-Write 3D Printing.
    Li L; Lin Q; Tang M; Duncan AJE; Ke C
    Chemistry; 2019 Aug; 25(46):10768-10781. PubMed ID: 31087700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D Printing of an
    Liu W; Erol O; Gracias DH
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33267-33275. PubMed ID: 32644785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN
    Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Semicrystalline physical hydrogels with shape-memory and self-healing properties.
    Okay O
    J Mater Chem B; 2019 Mar; 7(10):1581-1596. PubMed ID: 32254903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scalable and Automated Fabrication of Conductive Tough-Hydrogel Microfibers with Ultrastretchability, 3D Printability, and Stress Sensitivity.
    Wei S; Qu G; Luo G; Huang Y; Zhang H; Zhou X; Wang L; Liu Z; Kong T
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11204-11212. PubMed ID: 29504395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent development and biomedical applications of self-healing hydrogels.
    Wang Y; Adokoh CK; Narain R
    Expert Opin Drug Deliv; 2018 Jan; 15(1):77-91. PubMed ID: 28771375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent advances in 3D printable conductive hydrogel inks for neural engineering.
    Kim SD; Kim K; Shin M
    Nano Converg; 2023 Sep; 10(1):41. PubMed ID: 37679589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inkjet-Spray Hybrid Printing for 3D Freeform Fabrication of Multilayered Hydrogel Structures.
    Yoon S; Park JA; Lee HR; Yoon WH; Hwang DS; Jung S
    Adv Healthc Mater; 2018 Jul; 7(14):e1800050. PubMed ID: 29708307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D Printing of Thermoresponsive Polyisocyanide (PIC) Hydrogels as Bioink and Fugitive Material for Tissue Engineering.
    Celikkin N; Simó Padial J; Costantini M; Hendrikse H; Cohn R; Wilson CJ; Rowan AE; Święszkowski W
    Polymers (Basel); 2018 May; 10(5):. PubMed ID: 30966589
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ink Based on the Tunable Swollen Microsphere for a 3D Printing Hydrogel with Broad-Range Mechanical Properties.
    Zhang R; Guo J; Yang X; Jiang X; Zhang L; Zhou J; Cao X; Duan B
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15917-15927. PubMed ID: 36921089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking.
    Ouyang L; Highley CB; Rodell CB; Sun W; Burdick JA
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1743-1751. PubMed ID: 33440472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile and cost-effective synthesis of glycogen-based conductive hydrogels with extremely flexible, excellent self-healing and tunable mechanical properties.
    Hussain I; Sayed SM; Fu G
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1463-1469. PubMed ID: 29964106
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D-printed self-healing hydrogels via Digital Light Processing.
    Caprioli M; Roppolo I; Chiappone A; Larush L; Pirri CF; Magdassi S
    Nat Commun; 2021 Apr; 12(1):2462. PubMed ID: 33911075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.