These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33405695)

  • 1. 3,4-Dihydroxyphenylalanine (DOPA)-Containing Silk Fibroin: Its Enzymatic Synthesis and Adhesion Properties.
    Sogawa H; Ifuku N; Numata K
    ACS Biomater Sci Eng; 2019 Nov; 5(11):5644-5651. PubMed ID: 33405695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mussel Inspired In Situ Preparation of Antibacterial Silver Nanoparticles by DOPA-Containing Silk Fibroin.
    Wu Y; Chen C; Tang W; Liu W
    Macromol Biosci; 2023 Jun; 23(6):e2200510. PubMed ID: 36807527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silk/Natural Rubber (NR) and 3,4-Dihydroxyphenylalanine (DOPA)-Modified Silk/NR Composites: Synthesis, Secondary Structure, and Mechanical Properties.
    Sogawa H; Korawit T; Masunaga H; Numata K
    Molecules; 2020 Jan; 25(1):. PubMed ID: 31935972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Modification of Silk Fibroin through Serine Amino Acid Residues.
    Liu X; Xia Q; Zhou J; Zhang Y; Ju H; Deng Z
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of adhesive peptides similar to those found in blue mussel (Mytilus edulis) using papain and tyrosinase.
    Numata K; Baker PJ
    Biomacromolecules; 2014 Aug; 15(8):3206-12. PubMed ID: 25030620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silk Hydrogels with Controllable Formation of Dityrosine, 3,4-Dihydroxyphenylalanine, and 3,4-Dihydroxyphenylalanine-Fe
    Choi J; Hasturk O; Mu X; Sahoo JK; Kaplan DL
    Biomacromolecules; 2021 Feb; 22(2):773-787. PubMed ID: 33405916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silk fibroin film-coated MgZnCa alloy with enhanced in vitro and in vivo performance prepared using surface activation.
    Wang C; Fang H; Qi X; Hang C; Sun Y; Peng Z; Wei W; Wang Y
    Acta Biomater; 2019 Jun; 91():99-111. PubMed ID: 31028907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance evaluation of a silk protein-based matrix for the enzymatic conversion of tyrosine to L-DOPA.
    Acharya C; Kumar V; Sen R; Kundu SC
    Biotechnol J; 2008 Feb; 3(2):226-33. PubMed ID: 18034433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tyrosinase-Modified UHMW SELP Polymers as Wet and Underwater Adhesives to Achieve Multi-interface Adhesion.
    Huang W; Wang S; Feng Z; Zhou D; Bai W
    ACS Synth Biol; 2024 Apr; 13(4):1191-1204. PubMed ID: 38536670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiolation and characterization of regenerated
    Zhang X; Bao H; Donley C; Liang J; Yang S; Xu S
    BMC Chem; 2019 Dec; 13(1):62. PubMed ID: 31384810
    [No Abstract]   [Full Text] [Related]  

  • 11. Conformations and Intermolecular Interactions in Cellulose/Silk Fibroin Blend Films: A Solid-State NMR Perspective.
    Tian D; Li T; Zhang R; Wu Q; Chen T; Sun P; Ramamoorthy A
    J Phys Chem B; 2017 Jun; 121(25):6108-6116. PubMed ID: 28481526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties.
    Wang X; Gu Z; Jiang B; Li L; Yu X
    Biomater Sci; 2016 Apr; 4(4):678-88. PubMed ID: 26870855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silk Fibroin Aqueous-Based Adhesives Inspired by Mussel Adhesive Proteins.
    Burke KA; Roberts DC; Kaplan DL
    Biomacromolecules; 2016 Jan; 17(1):237-45. PubMed ID: 26674175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-Mode Cross-Linking Enhances Adhesion of Silk Fibroin Hydrogels to Intestinal Tissue.
    Heichel DL; Burke KA
    ACS Biomater Sci Eng; 2019 Jul; 5(7):3246-3259. PubMed ID: 33405568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method.
    Ming J; Liu Z; Bie S; Zhang F; Zuo B
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():48-53. PubMed ID: 24582221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: grafting of chitosan under heterogeneous reaction conditions.
    Freddi G; Anghileri A; Sampaio S; Buchert J; Monti P; Taddei P
    J Biotechnol; 2006 Sep; 125(2):281-94. PubMed ID: 16621091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO
    Johari N; Madaah Hosseini HR; Samadikuchaksaraei A
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():783-792. PubMed ID: 28629081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced cell adhesion on silk fibroin via lectin surface modification.
    Teuschl AH; Neutsch L; Monforte X; Rünzler D; van Griensven M; Gabor F; Redl H
    Acta Biomater; 2014 Jun; 10(6):2506-17. PubMed ID: 24530561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characteristics and properties of silk fibroin/poly(lactic acid) blend films.
    Zhu H; Feng X; Zhang H; Guo Y; Zhang J; Chen J
    J Biomater Sci Polym Ed; 2009; 20(9):1259-74. PubMed ID: 19520011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution.
    Zhang F; You X; Dou H; Liu Z; Zuo B; Zhang X
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3352-61. PubMed ID: 25603225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.