These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 33405700)

  • 21. A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers.
    Liu H; Wang Y; Chen W; Yu Y; Jiang L; Qin J
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109705. PubMed ID: 31499950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hollow fibers: from fabrication to applications.
    Tian Y; Wang Z; Wang L
    Chem Commun (Camb); 2021 Sep; 57(73):9166-9177. PubMed ID: 34519322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Encapsulation of dye molecules and nanoparticles in hollow organogel fibers of a nonchiral polyurethane model compound.
    Khan MK; Sundararajan P
    Chemistry; 2011 Jan; 17(4):1184-92. PubMed ID: 21243684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and characterization of heparin-grafted poly-L-lactic acid-chitosan core-shell nanofibers scaffold for vascular gasket.
    Wang T; Ji X; Jin L; Feng Z; Wu J; Zheng J; Wang H; Xu ZW; Guo L; He N
    ACS Appl Mater Interfaces; 2013 May; 5(9):3757-63. PubMed ID: 23586670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Promotion of neovascularization around hollow fiber bioartificial organs using biologically active substances.
    Hunter SK; Kao JM; Wang Y; Benda JA; Rodgers VG
    ASAIO J; 1999; 45(1):37-40. PubMed ID: 9952004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microengineered Multicomponent Hydrogel Fibers: Combining Polyelectrolyte Complexation and Microfluidics.
    Costa-Almeida R; Gasperini L; Borges J; Babo PS; Rodrigues MT; Mano JF; Reis RL; Gomes ME
    ACS Biomater Sci Eng; 2017 Jul; 3(7):1322-1331. PubMed ID: 33429690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation and characterization of natural polysaccharide hollow nanocapsules via template layer-by-layer self-assembly.
    Liu Y; Yang J; Zhao Z; Li J; Zhang R; Yao F
    J Colloid Interface Sci; 2012 Aug; 379(1):130-40. PubMed ID: 22609188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.
    Attalla R; Ling C; Selvaganapathy P
    Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chitosan-glucan complex hollow fibers reinforced collagen wound dressing embedded with aloe vera. Part I: Preparation and characterization.
    Abdel-Mohsen AM; Abdel-Rahman RM; Kubena I; Kobera L; Spotz Z; Zboncak M; Prikryl R; Brus J; Jancar J
    Carbohydr Polym; 2020 Feb; 230():115708. PubMed ID: 31887955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Laser-Based Trace Gas Detection inside Hollow-Core Fibers: A Review.
    Nikodem M
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32916799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The application of type II collagen and chondroitin sulfate grafted PCL porous scaffold in cartilage tissue engineering.
    Chang KY; Hung LH; Chu IM; Ko CS; Lee YD
    J Biomed Mater Res A; 2010 Feb; 92(2):712-23. PubMed ID: 19274722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Encapsulation of OKT3 cells in hollow fibers.
    Granicka LH; Kawiak JW; Glowacka E; Werynski A
    ASAIO J; 1996; 42(5):M863-6. PubMed ID: 8945007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multilayered Hollow Tubes as Blood Vessel Substitutes.
    Silva JM; Custódio CA; Reis RL; Mano JF
    ACS Biomater Sci Eng; 2016 Dec; 2(12):2304-2314. PubMed ID: 33465879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular composition of GAG-collagen I multilayers affects remodeling of terminal layers and osteogenic differentiation of adipose-derived stem cells.
    Zhao M; Altankov G; Grabiec U; Bennett M; Salmeron-Sanchez M; Dehghani F; Groth T
    Acta Biomater; 2016 Sep; 41():86-99. PubMed ID: 27188244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Living 3D In Vitro Neuronal Network Cultured inside Hollow Electrospun Microfibers.
    Wu Y; Ranjan VD; Zhang Y
    Adv Biosyst; 2018 May; 2(5):e1700218. PubMed ID: 33103856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A vascular tissue engineering scaffold with core-shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation.
    Duan N; Geng X; Ye L; Zhang A; Feng Z; Guo L; Gu Y
    Biomed Mater; 2016 May; 11(3):035007. PubMed ID: 27206161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects.
    Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD
    Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering.
    Wang G; Jia L; Han F; Wang J; Yu L; Yu Y; Turnbull G; Guo M; Shu W; Li B
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31027249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlative effect between in vivo hollow fiber assay and xenografts assay in drug screening.
    Lee KH; Rhee KH
    Cancer Res Treat; 2005 Jun; 37(3):196-200. PubMed ID: 19956503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of blood-compatible hollow fibers from a polymer alloy composed of polysulfone and 2-methacryloyloxyethyl phosphorylcholine polymer.
    Hasegawa T; Iwasaki Y; Ishihara K
    J Biomed Mater Res; 2002; 63(3):333-41. PubMed ID: 12115766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.