BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33405729)

  • 1. Effects of Gradient and Offset Architectures on the Mechanical and Biological Properties of 3-D Melt Electrowritten (MEW) Scaffolds.
    Abbasi N; Abdal-Hay A; Hamlet S; Graham E; Ivanovski S
    ACS Biomater Sci Eng; 2019 Jul; 5(7):3448-3461. PubMed ID: 33405729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of offset and gradient architectures of 3-D melt electrowritten scaffold on differentiation and mineralization of osteoblasts.
    Abbasi N; Ivanovski S; Gulati K; Love RM; Hamlet S
    Biomater Res; 2020; 24():2. PubMed ID: 31911842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo bone regeneration assessment of offset and gradient melt electrowritten (MEW) PCL scaffolds.
    Abbasi N; Lee RSB; Ivanovski S; Love RM; Hamlet S
    Biomater Res; 2020; 24():17. PubMed ID: 33014414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melt Electrowritten Sandwich Scaffold Technique Using Sulforhodamine B to Monitor Stem Cell Behavior.
    Turner PR; Yoshida M; Ali MA; Cabral JD
    Tissue Eng Part C Methods; 2020 Oct; 26(10):519-527. PubMed ID: 32977739
    [No Abstract]   [Full Text] [Related]  

  • 5. Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application.
    Shahverdi M; Seifi S; Akbari A; Mohammadi K; Shamloo A; Movahhedy MR
    Sci Rep; 2022 Nov; 12(1):19935. PubMed ID: 36402790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Melt-Electrowritten Polycaprolactone/Chitosan Scaffolds Enhance Mesenchymal Stem Cell Behavior.
    Yoshida M; Turner PR; Ali MA; Cabral JD
    ACS Appl Bio Mater; 2021 Feb; 4(2):1319-1329. PubMed ID: 35014483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis.
    Brennan CM; Eichholz KF; Hoey DA
    Biomed Mater; 2019 Nov; 14(6):065016. PubMed ID: 31574493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering.
    Zamani Y; Amoabediny G; Mohammadi J; Seddiqi H; Helder MN; Zandieh-Doulabi B; Klein-Nulend J; Koolstra JH
    J Mech Behav Biomed Mater; 2020 Apr; 104():103638. PubMed ID: 32174396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Pore Size on Cell Behavior Using Melt Electrowritten Scaffolds.
    Han Y; Lian M; Wu Q; Qiao Z; Sun B; Dai K
    Front Bioeng Biotechnol; 2021; 9():629270. PubMed ID: 34277578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of Melt Electrowritten PCL Scaffolds Following Melt Processing and Plasma Surface Treatment.
    Paxton NC; Ho SWK; Tuten BT; Lipton-Duffin J; Woodruff MA
    Macromol Rapid Commun; 2021 Dec; 42(23):e2100433. PubMed ID: 34668263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite Graded Melt Electrowritten Scaffolds for Regeneration of the Periodontal Ligament-to-Bone Interface.
    Golafshan N; Castilho M; Daghrery A; Alehosseini M; van de Kemp T; Krikonis K; de Ruijter M; Dal-Fabbro R; Dolatshahi-Pirouz A; Bhaduri SB; Bottino MC; Malda J
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):12735-12749. PubMed ID: 36854044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Super-Paramagnetic Iron Oxide Nanoparticle-Coated Melt Electrowritten Scaffolds for Biomedical Applications.
    Unalan I; Occhipinti I; Miola M; Vernè E; Boccaccini AR
    Macromol Biosci; 2024 Mar; 24(3):e2300397. PubMed ID: 37902248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melt-electrowriting with novel milk protein/PCL biomaterials for skin regeneration.
    Hewitt E; Mros S; McConnell M; Cabral JD; Ali A
    Biomed Mater; 2019 Aug; 14(5):055013. PubMed ID: 31318339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration.
    Wang Z; Wang H; Xiong J; Li J; Miao X; Lan X; Liu X; Wang W; Cai N; Tang Y
    Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112287. PubMed ID: 34474838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting.
    Chung JHY; Sayyar S; Wallace GG
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medical-grade polycaprolactone scaffolds made by melt electrospinning writing for oral bone regeneration - a pilot study in vitro.
    Fuchs A; Youssef A; Seher A; Hochleitner G; Dalton PD; Hartmann S; Brands RC; Müller-Richter UDA; Linz C
    BMC Oral Health; 2019 Feb; 19(1):28. PubMed ID: 30709394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork.
    Włodarczyk-Biegun MK; Villiou M; Koch M; Muth C; Wang P; Ott J; Del Campo A
    ACS Biomater Sci Eng; 2022 Sep; 8(9):3899-3911. PubMed ID: 35984428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of a bi-layered tissue engineered conjunctiva using a 3D-printed melt electrowritten poly-(ε-caprolactone) scaffold.
    Xie J; Gao Q; Del Prado ZN; Venkateswaran N; Mousa HM; Salero E; Ye J; De Juan-Pardo EM; Sabater AL; Perez VL
    Int Ophthalmol; 2023 Jan; 43(1):215-232. PubMed ID: 35932420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the bioactivity of melt electrowritten PLLA scaffold by convenient, green, and effective hydrophilic surface modification.
    Meng J; Boschetto F; Yagi S; Marin E; Adachi T; Chen X; Pezzotti G; Sakurai S; Sasaki S; Aoki T; Yamane H; Xu H
    Mater Sci Eng C Mater Biol Appl; 2022 Apr; 135():112686. PubMed ID: 35581096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo.
    Huang L; Zhu L; Shi X; Xia B; Liu Z; Zhu S; Yang Y; Ma T; Cheng P; Luo K; Huang J; Luo Z
    Acta Biomater; 2018 Mar; 68():223-236. PubMed ID: 29274478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.