BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33405754)

  • 1. Porous Scaffolds of Poly(lactic-
    Li L; Shi X; Wang Z; Guo M; Wang Y; Jiao Z; Zhang P
    ACS Biomater Sci Eng; 2019 May; 5(5):2466-2481. PubMed ID: 33405754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ polymerization of poly(γ-benzyl-l-glutamate) on mesoporous hydroxyapatite with high graft amounts for the direct fabrication of biodegradable cell microcarriers and their osteogenic induction.
    Li L; Shi X; Wang Z; Wang Y; Jiao Z; Zhang P
    J Mater Chem B; 2018 May; 6(20):3315-3330. PubMed ID: 32254389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Precipitation of Cluster and Acicular Hydroxyapatite onto Porous Poly(γ-benzyl-l-glutamate) Microcarriers for Bone Tissue Engineering.
    Bu S; Yan S; Wang R; Xia P; Zhang K; Li G; Yin J
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12468-12477. PubMed ID: 32091198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocomposite Porous Microcarriers Based on Strontium-Substituted HA- g-Poly(γ-benzyl-l-glutamate) for Bone Tissue Engineering.
    Yan S; Xia P; Xu S; Zhang K; Li G; Cui L; Yin J
    ACS Appl Mater Interfaces; 2018 May; 10(19):16270-16281. PubMed ID: 29688701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of bimodal porous poly(γ-benzyl-L-glutamate) scaffolds for bone tissue engineering.
    Qian J; Yong X; Xu W; Jin X
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4587-93. PubMed ID: 24094164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation, physicochemical properties and biocompatibility of PBLG/PLGA/bioglass composite scaffolds.
    Cui N; Qian J; Wang J; Ji C; Xu W; Wang H
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():118-124. PubMed ID: 27987675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The synthesis and characterization of hydroxyapatite-β-alanine modified by grafting polymerization of γ-benzyl-L-glutamate-N-carboxyanhydride.
    Shan Y; Qin Y; Chuan Y; Li H; Yuan M
    Molecules; 2013 Nov; 18(11):13979-91. PubMed ID: 24232735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering.
    Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS
    Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenic properties of PBLG-g-HA/PLLA nanocomposites.
    Liao L; Yang S; Miron RJ; Wei J; Zhang Y; Zhang M
    PLoS One; 2014; 9(9):e105876. PubMed ID: 25184285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The surface modification of hydroxyapatite nanoparticles by the ring opening polymerization of gamma-benzyl-l-glutamate N-carboxyanhydride.
    Wei J; Liu A; Chen L; Zhang P; Chen X; Jing X
    Macromol Biosci; 2009 Jul; 9(7):631-8. PubMed ID: 19165825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-printed hydroxyapatite microspheres reinforced PLGA scaffolds for bone regeneration.
    Wei J; Yan Y; Gao J; Li Y; Wang R; Wang J; Zou Q; Zuo Y; Zhu M; Li J
    Biomater Adv; 2022 Feb; 133():112618. PubMed ID: 35031175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration.
    Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H
    J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair.
    Cui Y; Liu Y; Cui Y; Jing X; Zhang P; Chen X
    Acta Biomater; 2009 Sep; 5(7):2680-92. PubMed ID: 19376759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide).
    Zhang P; Hong Z; Yu T; Chen X; Jing X
    Biomaterials; 2009 Jan; 30(1):58-70. PubMed ID: 18838160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone regeneration using injectable poly (γ-benzyl-L-glutamate) microspheres loaded with adipose-derived stem cells in a mouse femoral non-union model.
    Huang Z; Gu H; Yin X; Gao L; Zhang K; Zhang Y; Xu J; Wu L; Yin J; Cui L
    Am J Transl Res; 2019; 11(5):2641-2656. PubMed ID: 31217844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ characterization of N-carboxy anhydride polymerization in nanoporous anodic alumina.
    Lau KH; Duran H; Knoll W
    J Phys Chem B; 2009 Mar; 113(10):3179-89. PubMed ID: 19228003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RGD-conjugated copolymer incorporated into composite of poly(lactide-co-glycotide) and poly(L-lactide)-grafted nanohydroxyapatite for bone tissue engineering.
    Zhang P; Wu H; Wu H; Lù Z; Deng C; Hong Z; Jing X; Chen X
    Biomacromolecules; 2011 Jul; 12(7):2667-80. PubMed ID: 21604718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds.
    Zong C; Qian X; Tang Z; Hu Q; Chen J; Gao C; Tang R; Tong X; Wang J
    J Biomed Nanotechnol; 2014 Jun; 10(6):1091-104. PubMed ID: 24749403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X; Miao X
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.
    He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J
    Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.