These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 33405844)

  • 1. Effect of Dexamethasone on Room Temperature Three-Dimensional Printing, Rheology, and Degradation of a Low Modulus Polyester for Soft Tissue Engineering.
    Jain T; Saylor D; Piard C; Liu Q; Patel V; Kaushal R; Choi JW; Fisher J; Isayeva I; Joy A
    ACS Biomater Sci Eng; 2019 Feb; 5(2):846-858. PubMed ID: 33405844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Effect of Physical and Chemical Cross-Linkers Enhances Shape Fidelity and Mechanical Properties of 3D Printable Low-Modulus Polyesters.
    Ortiz-Ortiz DN; Mokarizadeh AH; Segal M; Dang F; Zafari M; Tsige M; Joy A
    Biomacromolecules; 2023 Nov; 24(11):5091-5104. PubMed ID: 37882707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-manufacture loading of filaments and 3D printed PLA scaffolds with prednisolone and dexamethasone for tissue regeneration applications.
    Farto-Vaamonde X; Auriemma G; Aquino RP; Concheiro A; Alvarez-Lorenzo C
    Eur J Pharm Biopharm; 2019 Aug; 141():100-110. PubMed ID: 31112767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering.
    Contessi Negrini N; Celikkin N; Tarsini P; Farè S; Święszkowski W
    Biofabrication; 2020 Jan; 12(2):025001. PubMed ID: 31715587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds.
    Ji S; Dube K; Chesterman JP; Fung SL; Liaw CY; Kohn J; Guvendiren M
    Biomater Sci; 2019 Jan; 7(2):560-570. PubMed ID: 30534726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity.
    Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature 3D printing of collagen and chitosan composite for tissue engineering.
    Suo H; Zhang J; Xu M; Wang L
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111963. PubMed ID: 33812591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds.
    Zhang B; Cristescu R; Chrisey DB; Narayan RJ
    Int J Bioprint; 2020; 6(1):211. PubMed ID: 32596549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of 3D printability of composite dairy matrix by correlating with its rheological properties.
    Joshi S; Sahu JK; Bareen MA; Prakash S; Bhandari B; Sharma N; Naik SN
    Food Res Int; 2021 Mar; 141():110111. PubMed ID: 33641978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering.
    Nadim A; Khorasani SN; Kharaziha M; Davoodi SM
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():47-58. PubMed ID: 28576011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite PLA/PEG/nHA/Dexamethasone Scaffold Prepared by 3D Printing for Bone Regeneration.
    Li X; Wang Y; Wang Z; Qi Y; Li L; Zhang P; Chen X; Huang Y
    Macromol Biosci; 2018 Jun; 18(6):e1800068. PubMed ID: 29687630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting.
    Kim MH; Lee YW; Jung WK; Oh J; Nam SY
    J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores.
    Huang L; Du X; Fan S; Yang G; Shao H; Li D; Cao C; Zhu Y; Zhu M; Zhang Y
    Carbohydr Polym; 2019 Oct; 221():146-156. PubMed ID: 31227153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug Loaded 3D-Printed Poly(ε-Caprolactone) Scaffolds for Local Antibacterial or Anti-Inflammatory Treatment in Bone Regeneration.
    Stepanova M; Averianov I; Gofman I; Shevchenko N; Rubinstein A; Egorova T; Trulioff A; Nashchekina Y; Kudryavtsev I; Demyanova E; Korzhikova-Vlakh E; Korzhikov-Vlakh V
    Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37836006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds.
    Serra T; Ortiz-Hernandez M; Engel E; Planell JA; Navarro M
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():55-62. PubMed ID: 24656352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tripolyphosphate-Crosslinked Chitosan/Gelatin Biocomposite Ink for 3D Printing of Uniaxial Scaffolds.
    Fischetti T; Celikkin N; Contessi Negrini N; Farè S; Swieszkowski W
    Front Bioeng Biotechnol; 2020; 8():400. PubMed ID: 32426350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printed matrix solid forms: Can the drug solubility and dose customisation affect their controlled release behaviour?
    Dos Santos J; Balbinot GS; Buchner S; Collares FM; Windbergs M; Deon M; Beck RCR
    Int J Pharm X; 2023 Dec; 5():100153. PubMed ID: 36632070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features.
    Mora-Boza A; Włodarczyk-Biegun MK; Del Campo A; Vázquez-Lasa B; Román JS
    Biomater Sci; 2019 Dec; 8(1):506-516. PubMed ID: 31764919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.