These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33405844)

  • 21. Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering.
    Müller M; Fisch P; Molnar M; Eggert S; Binelli M; Maniura-Weber K; Zenobi-Wong M
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110510. PubMed ID: 31924006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.
    Ouyang L; Yao R; Zhao Y; Sun W
    Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.
    Hung KC; Tseng CS; Dai LG; Hsu SH
    Biomaterials; 2016 Mar; 83():156-68. PubMed ID: 26774563
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D printing of bone tissue engineering scaffolds.
    Wang C; Huang W; Zhou Y; He L; He Z; Chen Z; He X; Tian S; Liao J; Lu B; Wei Y; Wang M
    Bioact Mater; 2020 Mar; 5(1):82-91. PubMed ID: 31956737
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three dimensional cell printing with sulfated alginate for improved bone morphogenetic protein-2 delivery and osteogenesis in bone tissue engineering.
    Park J; Lee SJ; Lee H; Park SA; Lee JY
    Carbohydr Polym; 2018 Sep; 196():217-224. PubMed ID: 29891290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices.
    Genina N; Holländer J; Jukarainen H; Mäkilä E; Salonen J; Sandler N
    Eur J Pharm Sci; 2016 Jul; 90():53-63. PubMed ID: 26545484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D printing of photocurable poly(glycerol sebacate) elastomers.
    Yeh YC; Highley CB; Ouyang L; Burdick JA
    Biofabrication; 2016 Oct; 8(4):045004. PubMed ID: 27716633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering.
    Ho CM; Mishra A; Lin PT; Ng SH; Yeong WY; Kim YJ; Yoon YJ
    Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27892655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of 3D Printing Temperature on Bioactivity of Bone Morphogenetic Protein-2 Released from Polymeric Constructs.
    Koons GL; Kontoyiannis PD; Diba M; Chim LK; Scott DW; Mikos AG
    Ann Biomed Eng; 2021 Sep; 49(9):2114-2125. PubMed ID: 33560466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function.
    Dang HP; Shabab T; Shafiee A; Peiffer QC; Fox K; Tran N; Dargaville TR; Hutmacher DW; Tran PA
    Biofabrication; 2019 Apr; 11(3):035014. PubMed ID: 30933941
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printing of complex GelMA-based scaffolds with nanoclay.
    Gao Q; Niu X; Shao L; Zhou L; Lin Z; Sun A; Fu J; Chen Z; Hu J; Liu Y; He Y
    Biofabrication; 2019 Apr; 11(3):035006. PubMed ID: 30836349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering.
    Jammalamadaka U; Tappa K
    J Funct Biomater; 2018 Mar; 9(1):. PubMed ID: 29494503
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing.
    Huan S; Ajdary R; Bai L; Klar V; Rojas OJ
    Biomacromolecules; 2019 Feb; 20(2):635-644. PubMed ID: 30240194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds.
    Mott EJ; Busso M; Luo X; Dolder C; Wang MO; Fisher JP; Dean D
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():301-11. PubMed ID: 26838854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiscale Porosity in Compressible Cryogenically 3D Printed Gels for Bone Tissue Engineering.
    Gupta D; Singh AK; Dravid A; Bellare J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20437-20452. PubMed ID: 31081613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering.
    Wang C; Zhao Q; Wang M
    Biofabrication; 2017 Jun; 9(2):025031. PubMed ID: 28589918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants.
    Wu L; Virdee J; Maughan E; Darbyshire A; Jell G; Loizidou M; Emberton M; Butler P; Howkins A; Reynolds A; Boyd IW; Birchall M; Song W
    Acta Biomater; 2018 Oct; 80():188-202. PubMed ID: 30223094
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D Printing of Silk Particle-Reinforced Chitosan Hydrogel Structures and Their Properties.
    Zhang J; Allardyce BJ; Rajkhowa R; Zhao Y; Dilley RJ; Redmond SL; Wang X; Liu X
    ACS Biomater Sci Eng; 2018 Aug; 4(8):3036-3046. PubMed ID: 33435023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.