These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33405875)

  • 1. Novel Hierarchical Nitrogen-Doped Multiwalled Carbon Nanotubes/Cellulose/Nanohydroxyapatite Nanocomposite As an Osteoinductive Scaffold for Enhancing Bone Regeneration.
    Zhang X; Yin X; Luo J; Zheng X; Wang H; Wang J; Xi Z; Liao X; Machuki JO; Guo K; Gao F
    ACS Biomater Sci Eng; 2019 Jan; 5(1):294-307. PubMed ID: 33405875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A silk fibroin/chitosan/nanohydroxyapatite biomimetic bone scaffold combined with autologous concentrated growth factor promotes the proliferation and osteogenic differentiation of BMSCs and repair of critical bone defects.
    Zhou Y; Liu X; She H; Wang R; Bai F; Xiang B
    Regen Ther; 2022 Dec; 21():307-321. PubMed ID: 36110973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: Physicochemical, mechanical and in vivo evaluations.
    El-Fiqi A; Kim JH; Kim HW
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110660. PubMed ID: 32204088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensionally N-Doped Graphene-Hydroxyapatite/Agarose as an Osteoinductive Scaffold for Enhancing Bone Regeneration.
    Luo J; Zhang X; Ong'achwa Machuki J; Dai C; Li Y; Guo K; Gao F
    ACS Appl Bio Mater; 2019 Jan; 2(1):299-310. PubMed ID: 35016353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-printed nanohydroxyapatite/methylacrylylated silk fibroin scaffold for repairing rat skull defects.
    Huiwen W; Shuai L; Jia X; Shihao D; Kun W; Runhuai Y; Haisheng Q; Jun L
    J Biol Eng; 2024 Mar; 18(1):22. PubMed ID: 38515148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation.
    Huang B; Vyas C; Byun JJ; El-Newehy M; Huang Z; Bártolo P
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110374. PubMed ID: 31924043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct 3D printing of a tough hydrogel incorporated with carbon nanotubes for bone regeneration.
    Cui H; Yu Y; Li X; Sun Z; Ruan J; Wu Z; Qian J; Yin J
    J Mater Chem B; 2019 Dec; 7(45):7207-7217. PubMed ID: 31663588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceleration of Bone Regeneration in Critical-Size Defect Using BMP-9-Loaded nHA/ColI/MWCNTs Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells.
    Zhang R; Li X; Liu Y; Gao X; Zhu T; Lu L
    Biomed Res Int; 2019; 2019():7343957. PubMed ID: 31111065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Content-Dependent Osteogenic Response of Nanohydroxyapatite: An in Vitro and in Vivo Assessment within Collagen-Based Scaffolds.
    Cunniffe GM; Curtin CM; Thompson EM; Dickson GR; O'Brien FJ
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23477-88. PubMed ID: 27537605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchically porous nagelschmidtite bioceramic-silk scaffolds for bone tissue engineering.
    Xu M; Li H; Zhai D; Chang J; Chen S; Wu C
    J Mater Chem B; 2015 May; 3(18):3799-3809. PubMed ID: 32262854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit model.
    Ruan SQ; Deng J; Yan L; Huang WL
    Biomed Pharmacother; 2018 Jan; 97():600-606. PubMed ID: 29101803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Evaluation of BMMSC-seeded BMP-6/nHAG/GMS Scaffolds for Bone Regeneration.
    Li X; Zhang R; Tan X; Li B; Liu Y; Wang X
    Int J Med Sci; 2019; 16(7):1007-1017. PubMed ID: 31341414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel cellulose/hydroxyapatite scaffolds for bone tissue regeneration: In vitro and in vivo study.
    Daugela P; Pranskunas M; Juodzbalys G; Liesiene J; Baniukaitiene O; Afonso A; Sousa Gomes P
    J Tissue Eng Regen Med; 2018 May; 12(5):1195-1208. PubMed ID: 29498222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocomposite scaffold seeded with mesenchymal stem cells for bone repair.
    Farshadi M; Johari B; Erfani Ezadyar E; Gholipourmalekabadi M; Azami M; Madanchi H; Haramshahi SMA; Yari A; Karimizade A; Nekouian R; Samadikuchaksaraei A
    Cell Biol Int; 2019 Dec; 43(12):1379-1392. PubMed ID: 30811084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel hybrid 3D-printed titanium scaffold for osteogenesis in a rabbit calvarial defect model.
    Yin B; Xue B; Wu Z; Ma J; Wang K
    Am J Transl Res; 2018; 10(2):474-482. PubMed ID: 29511441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printed-electrospun PCL/hydroxyapatite/MWCNTs scaffolds for the repair of subchondral bone.
    Cao Y; Sun L; Liu Z; Shen Z; Jia W; Hou P; Sang S
    Regen Biomater; 2023; 10():rbac104. PubMed ID: 36683741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving osteogenesis of three-dimensional porous scaffold based on mineralized recombinant human-like collagen via mussel-inspired polydopamine and effective immobilization of BMP-2-derived peptide.
    Zhou J; Guo X; Zheng Q; Wu Y; Cui F; Wu B
    Colloids Surf B Biointerfaces; 2017 Apr; 152():124-132. PubMed ID: 28103529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.
    Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM
    Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.