These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 33405903)
1. A Cu-bis(imidazole) Substrate Intermediate Is the Catalytically Competent Center for Catechol Oxidase Activity of Copper Amyloid-β. Bacchella C; Dell'Acqua S; Nicolis S; Monzani E; Casella L Inorg Chem; 2021 Jan; 60(2):606-613. PubMed ID: 33405903 [TBL] [Abstract][Full Text] [Related]
2. Oxidase Reactivity of Cu Bacchella C; Dell'Acqua S; Nicolis S; Monzani E; Casella L Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068879 [TBL] [Abstract][Full Text] [Related]
3. Copper binding and redox chemistry of the Aβ16 peptide and its variants: insights into determinants of copper-dependent reactivity. Yako N; Young TR; Cottam Jones JM; Hutton CA; Wedd AG; Xiao Z Metallomics; 2017 Mar; 9(3):278-291. PubMed ID: 28145544 [TBL] [Abstract][Full Text] [Related]
4. Copper-Aβ Peptides and Oxidation of Catecholic Substrates: Reactivity and Endogenous Peptide Damage. Pirota V; Dell'Acqua S; Monzani E; Nicolis S; Casella L Chemistry; 2016 Nov; 22(47):16964-16973. PubMed ID: 27735097 [TBL] [Abstract][Full Text] [Related]
5. Tyrosinase and catechol oxidase activity of copper(I) complexes supported by imidazole-based ligands: structure-reactivity correlations. Wendt F; Näther C; Tuczek F J Biol Inorg Chem; 2016 Sep; 21(5-6):777-92. PubMed ID: 27333775 [TBL] [Abstract][Full Text] [Related]
6. Methionine does not reduce Cu(II)-beta-amyloid!--rectification of the roles of methionine-35 and reducing agents in metal-centered oxidation chemistry of Cu(II)-beta-amyloid. da Silva GF; Lykourinou V; Angerhofer A; Ming LJ Biochim Biophys Acta; 2009 Jan; 1792(1):49-55. PubMed ID: 19061952 [TBL] [Abstract][Full Text] [Related]
7. Design and catalytic studies of structural and functional models of the catechol oxidase enzyme. Terán A; Jaafar A; Sánchez-Peláez AE; Torralba MC; Gutiérrez Á J Biol Inorg Chem; 2020 Jun; 25(4):671-683. PubMed ID: 32367388 [TBL] [Abstract][Full Text] [Related]
8. Copper reduction and dioxygen activation in Cu-amyloid beta peptide complexes: insight from molecular modelling. Arrigoni F; Prosdocimi T; Mollica L; De Gioia L; Zampella G; Bertini L Metallomics; 2018 Nov; 10(11):1618-1630. PubMed ID: 30345437 [TBL] [Abstract][Full Text] [Related]
9. Modeling tyrosinase and catecholase activity using new m-Xylyl-based ligands with bidentate alkylamine terminal coordination. Mandal S; Mukherjee J; Lloret F; Mukherjee R Inorg Chem; 2012 Dec; 51(24):13148-61. PubMed ID: 23194383 [TBL] [Abstract][Full Text] [Related]
10. Catechol oxidase-like oxidation chemistry of the 1-20 and 1-16 fragments of Alzheimer's disease-related beta-amyloid peptide: their structure-activity correlation and the fate of hydrogen peroxide. da Silva GF; Tay WM; Ming LJ J Biol Chem; 2005 Apr; 280(17):16601-9. PubMed ID: 15699049 [TBL] [Abstract][Full Text] [Related]
11. Transfer of Copper from an Amyloid to a Natural Copper-Carrier Peptide with a Specific Mediating Ligand. Nguyen M; Bijani C; Martins N; Meunier B; Robert A Chemistry; 2015 Nov; 21(47):17085-90. PubMed ID: 26420347 [TBL] [Abstract][Full Text] [Related]
12. Copper(I) and copper(II) binding to β-amyloid 16 (Aβ16) studied by electrospray ionization mass spectrometry. Lu Y; Prudent M; Qiao L; Mendez MA; Girault HH Metallomics; 2010 Jul; 2(7):474-9. PubMed ID: 21072347 [TBL] [Abstract][Full Text] [Related]
13. Structural analysis of copper(I) interaction with amyloid β peptide. De Gregorio G; Biasotto F; Hecel A; Luczkowski M; Kozlowski H; Valensin D J Inorg Biochem; 2019 Jun; 195():31-38. PubMed ID: 30884319 [TBL] [Abstract][Full Text] [Related]
14. Redox reactions of copper complexes formed with different beta-amyloid peptides and their neuropathological [correction of neuropathalogical] relevance. Jiang D; Men L; Wang J; Zhang Y; Chickenyen S; Wang Y; Zhou F Biochemistry; 2007 Aug; 46(32):9270-82. PubMed ID: 17636872 [TBL] [Abstract][Full Text] [Related]
15. Metal binding of flavonoids and their distinct inhibition mechanisms toward the oxidation activity of Cu2+-β-amyloid: not just serving as suicide antioxidants! Tay WM; da Silva GF; Ming LJ Inorg Chem; 2013 Jan; 52(2):679-90. PubMed ID: 23301941 [TBL] [Abstract][Full Text] [Related]
16. Copper(II)-bis-histidine coordination structure in a fibrillar amyloid β-peptide fragment and model complexes revealed by electron spin echo envelope modulation spectroscopy. Hernández-Guzmán J; Sun L; Mehta AK; Dong J; Lynn DG; Warncke K Chembiochem; 2013 Sep; 14(14):1762-71. PubMed ID: 24014287 [TBL] [Abstract][Full Text] [Related]
17. An integrated study of the affinities of the Aβ16 peptide for Cu(I) and Cu(II): implications for the catalytic production of reactive oxygen species. Young TR; Kirchner A; Wedd AG; Xiao Z Metallomics; 2014 Mar; 6(3):505-17. PubMed ID: 24493126 [TBL] [Abstract][Full Text] [Related]
18. Using N-Terminal Coordination of Cu(II) and Ni(II) to Isolate the Coordination Environment of Cu(I) and Cu(II) Bound to His13 and His14 in Amyloid-β(4-16). Pushie MJ; Stefaniak E; Sendzik MR; Sokaras D; Kroll T; Haas KL Inorg Chem; 2019 Nov; 58(22):15138-15154. PubMed ID: 31657204 [TBL] [Abstract][Full Text] [Related]
19. Amyloid beta-Cu2+ complexes in both monomeric and fibrillar forms do not generate H2O2 catalytically but quench hydroxyl radicals. Nadal RC; Rigby SE; Viles JH Biochemistry; 2008 Nov; 47(44):11653-64. PubMed ID: 18847222 [TBL] [Abstract][Full Text] [Related]
20. A new chiral, poly-imidazole N8-ligand and the related di- and tri-copper(II) complexes: synthesis, theoretical modelling, spectroscopic properties, and biomimetic stereoselective oxidations. Mutti FG; Gullotti M; Casella L; Santagostini L; Pagliarin R; Andersson KK; Iozzi MF; Zoppellaro G Dalton Trans; 2011 May; 40(20):5436-57. PubMed ID: 21298193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]