These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33405929)

  • 1. Two-Dimensional Carbon Allotropes and Nanoribbons based on 2,6-Polyazulene Chains: Stacking Stabilities and Electronic Properties.
    Li J; Li S; Ouyang T; Zhang C; Tang C; He C; Zhong J
    J Phys Chem Lett; 2021 Jan; 12(2):732-738. PubMed ID: 33405929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoribbons with Nonalternant Topology from Fusion of Polyazulene: Carbon Allotropes beyond Graphene.
    Fan Q; Martin-Jimenez D; Ebeling D; Krug CK; Brechmann L; Kohlmeyer C; Hilt G; Hieringer W; Schirmeisen A; Gottfried JM
    J Am Chem Soc; 2019 Nov; 141(44):17713-17720. PubMed ID: 31617709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phagraphene: A Low-Energy Graphene Allotrope Composed of 5-6-7 Carbon Rings with Distorted Dirac Cones.
    Wang Z; Zhou XF; Zhang X; Zhu Q; Dong H; Zhao M; Oganov AR
    Nano Lett; 2015 Sep; 15(9):6182-6. PubMed ID: 26262429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study.
    Sun H; Mukherjee S; Singh CV
    Phys Chem Chem Phys; 2016 Sep; 18(38):26736-26742. PubMed ID: 27722589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Penta-graphene and phagraphene: thermal expansion, linear compressibility, and Poisson's ratio.
    Wang L; Chen Y; Miura H; Suzuki K; Wang C
    J Phys Condens Matter; 2022 Oct; 34(50):. PubMed ID: 36265479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and transport properties and physical field coupling effects for net-Y nanoribbons.
    Hu JK; Zhang ZH; Fan ZQ; Zhou RL
    Nanotechnology; 2019 Nov; 30(48):485703. PubMed ID: 31426048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling effects of the electric field and bending on the electronic and magnetic properties of penta-graphene nanoribbons.
    He C; Wang XF; Zhang WX
    Phys Chem Chem Phys; 2017 Jul; 19(28):18426-18433. PubMed ID: 28678250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Me-graphene: a graphene allotrope with near zero Poisson's ratio, sizeable band gap, and high carrier mobility.
    Zhuo Z; Wu X; Yang J
    Nanoscale; 2020 Oct; 12(37):19359-19366. PubMed ID: 32940310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Honeycomb Boron Allotropes with Dirac Cones: A True Analogue to Graphene.
    Yi WC; Liu W; Botana J; Zhao L; Liu Z; Liu JY; Miao MS
    J Phys Chem Lett; 2017 Jun; 8(12):2647-2653. PubMed ID: 28558468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical two-atom thick semiconducting carbon sheet.
    Hu M; Shu Y; Cui L; Xu B; Yu D; He J
    Phys Chem Chem Phys; 2014 Sep; 16(34):18118-23. PubMed ID: 25053451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the electronic and mechanical properties of phagraphene via hydrogenation and fluorination.
    Wu D; Wang S; Yuan J; Yang B; Chen H
    Phys Chem Chem Phys; 2017 May; 19(19):11771-11777. PubMed ID: 28294212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles study on the electronic properties of biphenylene, net-graphene, graphene+, and T-graphene based nanoribbons.
    Zhou W; Luo C; Chao Y; Xiong S; Long M; Chen T
    RSC Adv; 2024 Mar; 14(12):8067-8074. PubMed ID: 38454942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrically Induced Dirac Fermions in Graphene Nanoribbons.
    Pizzochero M; Tepliakov NV; Mostofi AA; Kaxiras E
    Nano Lett; 2021 Nov; 21(21):9332-9338. PubMed ID: 34714095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Family behavior and Dirac bands in armchair nanoribbons with 4-8 defect lines.
    Gillen R; Maultzsch J
    J Phys Condens Matter; 2024 Apr; 36(29):. PubMed ID: 38579744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties and current-carrying capacity of Al reinforced with graphene/BN nanoribbons: a computational study.
    Kvashnin DG; Ghorbani-Asl M; Shtansky DV; Golberg D; Krasheninnikov AV; Sorokin PB
    Nanoscale; 2016 Dec; 8(48):20080-20089. PubMed ID: 27892592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two dimensional Dirac carbon allotropes from graphene.
    Xu LC; Wang RZ; Miao MS; Wei XL; Chen YP; Yan H; Lau WM; Liu LM; Ma YM
    Nanoscale; 2014 Jan; 6(2):1113-8. PubMed ID: 24296630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements.
    Vacacela Gomez C; Pisarra M; Gravina M; Pitarke JM; Sindona A
    Phys Rev Lett; 2016 Sep; 117(11):116801. PubMed ID: 27661709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A series of two-dimensional carbon allotropes with Dirac cone structure.
    Wang GX
    Phys Chem Chem Phys; 2023 Jun; 25(23):15815-15821. PubMed ID: 37254773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.