These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33405929)

  • 21. A first-principles study of stable few-layer penta-silicene.
    Aierken Y; Leenaerts O; Peeters FM
    Phys Chem Chem Phys; 2016 Jul; 18(27):18486-92. PubMed ID: 27339660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exciton-dominated optical response of ultra-narrow graphene nanoribbons.
    Denk R; Hohage M; Zeppenfeld P; Cai J; Pignedoli CA; Söde H; Fasel R; Feng X; Müllen K; Wang S; Prezzi D; Ferretti A; Ruini A; Molinari E; Ruffieux P
    Nat Commun; 2014 Jul; 5():4253. PubMed ID: 25001405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unveiling and Manipulating Hidden Symmetries in Graphene Nanoribbons.
    Tepliakov NV; Lischner J; Kaxiras E; Mostofi AA; Pizzochero M
    Phys Rev Lett; 2023 Jan; 130(2):026401. PubMed ID: 36706398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On-Surface Synthesis of 8- and 10-Armchair Graphene Nanoribbons.
    Sun K; Ji P; Zhang J; Wang J; Li X; Xu X; Zhang H; Chi L
    Small; 2019 Apr; 15(15):e1804526. PubMed ID: 30891917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon phosphide nanosheets and nanoribbons: insights on modulating their electronic properties by first principles calculations.
    Chen T; Li H; Zhu Y; Liu D; Zhou G; Xu L
    Phys Chem Chem Phys; 2020 Oct; 22(39):22520-22528. PubMed ID: 33000812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Penta-Hexa-Graphene Nanoribbons: Intrinsic Magnetism and Edge Effect Induce Spin-Gapless Semiconducting and Half-Metallic Properties.
    Deng YX; Chen SZ; Zhang Y; Yu X; Xie ZX; Tang LM; Chen KQ
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53088-53095. PubMed ID: 33197167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Origin of multiple band gap values in single width nanoribbons.
    Deepika ; Kumar S; Shukla A; Kumar R
    Sci Rep; 2016 Nov; 6():36168. PubMed ID: 27808172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic structure of atomically precise graphene nanoribbons.
    Ruffieux P; Cai J; Plumb NC; Patthey L; Prezzi D; Ferretti A; Molinari E; Feng X; Müllen K; Pignedoli CA; Fasel R
    ACS Nano; 2012 Aug; 6(8):6930-5. PubMed ID: 22853456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene nanoribbons anchored to SiC substrates.
    Le NB; Woods LM
    J Phys Condens Matter; 2016 Sep; 28(36):364001. PubMed ID: 27392014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emerging properties of carbon based 2D material beyond graphene.
    Jana S; Bandyopadhyay A; Datta S; Bhattacharya D; Jana D
    J Phys Condens Matter; 2021 Nov; 34(5):. PubMed ID: 34663760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stacking sequences of black phosphorous allotropes and the corresponding few-layer phosphorenes.
    Wei Y; Lu F; Zhou T; Luo X; Zhao Y
    Phys Chem Chem Phys; 2018 Apr; 20(15):10185-10192. PubMed ID: 29594304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.
    Kosynkin DV; Higginbotham AL; Sinitskii A; Lomeda JR; Dimiev A; Price BK; Tour JM
    Nature; 2009 Apr; 458(7240):872-6. PubMed ID: 19370030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nano-makisu: highly anisotropic two-dimensional carbon allotropes made by weaving together nanotubes.
    Zhao L; Liu W; Yi W; Hu T; Khodagholian D; Gu F; Lin H; Zurek E; Zheng Y; Miao M
    Nanoscale; 2020 Jan; 12(1):347-355. PubMed ID: 31825450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electronic Structures of Penta-SiC
    Liu Z; Liu X; Wang J
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Semimetallic carbon honeycombs: new three-dimensional graphene allotropes with Dirac cones.
    Wang S; Wu D; Yang B; Ruckenstein E; Chen H
    Nanoscale; 2018 Feb; 10(6):2748-2754. PubMed ID: 29336453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidation stability of confined linear carbon chains, carbon nanotubes, and graphene nanoribbons as 1D nanocarbons.
    Cui W; Saito T; Ayala P; Pichler T; Shi L
    Nanoscale; 2019 Aug; 11(32):15253-15258. PubMed ID: 31386735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new two-dimensional all-sp
    Yang X; Wang Y; Xiao R; Wen T; Shen Y; Liu H; Wang Y; Li R; Yao X
    Phys Chem Chem Phys; 2021 Feb; 23(4):2906-2913. PubMed ID: 33475637
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical properties and magnetic flux-induced electronic band tuning of a T-graphene sheet and nanoribbon.
    Bandyopadhyay A; Nandy A; Chakrabarti A; Jana D
    Phys Chem Chem Phys; 2017 Aug; 19(32):21584-21594. PubMed ID: 28766610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Performance Charge Transport in Semiconducting Armchair Graphene Nanoribbons Grown Directly on Germanium.
    Jacobberger RM; Arnold MS
    ACS Nano; 2017 Sep; 11(9):8924-8929. PubMed ID: 28880526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.