BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33405934)

  • 1. Excitonic Dynamics in Janus MoSSe and WSSe Monolayers.
    Zheng T; Lin YC; Yu Y; Valencia-Acuna P; Puretzky AA; Torsi R; Liu C; Ivanov IN; Duscher G; Geohegan DB; Ni Z; Xiao K; Zhao H
    Nano Lett; 2021 Jan; 21(2):931-937. PubMed ID: 33405934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice thermal conductivity of Janus MoSSe and WSSe monolayers.
    Qin H; Ren K; Zhang G; Dai Y; Zhang G
    Phys Chem Chem Phys; 2022 Aug; 24(34):20437-20444. PubMed ID: 35983909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room Temperature Bound Excitons and Strain-Tunable Carrier Mobilities in Janus Monolayer Transition-Metal Dichalcogenides.
    Hou B; Zhang Y; Zhang H; Shao H; Ma C; Zhang X; Chen Y; Xu K; Ni G; Zhu H
    J Phys Chem Lett; 2020 Apr; 11(8):3116-3128. PubMed ID: 32220211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic and Optical Properties of Pristine and Vertical and Lateral Heterostructures of Janus MoSSe and WSSe.
    Li F; Wei W; Zhao P; Huang B; Dai Y
    J Phys Chem Lett; 2017 Dec; 8(23):5959-5965. PubMed ID: 29169238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct formation of interlayer excitons in MoSSe/WSSe van der Waals heterobilayer.
    Li F; Wang Y; Liang Y; Dai Y; Huang B; Wei W
    J Phys Condens Matter; 2023 May; 35(30):. PubMed ID: 37094583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscrolls of Janus Monolayer Transition Metal Dichalcogenides.
    Kaneda M; Zhang W; Liu Z; Gao Y; Maruyama M; Nakanishi Y; Nakajo H; Aoki S; Honda K; Ogawa T; Hashimoto K; Endo T; Aso K; Chen T; Oshima Y; Yamada-Takamura Y; Takahashi Y; Okada S; Kato T; Miyata Y
    ACS Nano; 2024 Jan; 18(4):2772-2781. PubMed ID: 38230852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Janus Monolayers for Ultrafast and Directional Charge Transfer in Transition Metal Dichalcogenide Heterostructures.
    Zheng T; Lin YC; Rafizadeh N; Geohegan DB; Ni Z; Xiao K; Zhao H
    ACS Nano; 2022 Mar; 16(3):4197-4205. PubMed ID: 35234440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dipole moment and pressure dependent interlayer excitons in MoSSe/WSSe heterostructures.
    Pang R; Wang S
    Nanoscale; 2022 Mar; 14(9):3416-3424. PubMed ID: 35113117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors.
    Niehues I; Schmidt R; Drüppel M; Marauhn P; Christiansen D; Selig M; Berghäuser G; Wigger D; Schneider R; Braasch L; Koch R; Castellanos-Gomez A; Kuhn T; Knorr A; Malic E; Rohlfing M; Michaelis de Vasconcellos S; Bratschitsch R
    Nano Lett; 2018 Mar; 18(3):1751-1757. PubMed ID: 29389133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppressed Carrier Recombination in Janus MoSSe Bilayer Stacks: A Time-Domain Ab Initio Study.
    Song B; Liu L; Yam C
    J Phys Chem Lett; 2019 Sep; 10(18):5564-5570. PubMed ID: 31475829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Behaviors in Janus Transition-Metal Dichalcogenides: A Molecular Dynamics Simulation.
    Yang F; Shang J; Kou L; Li C; Deng Z
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic Control of Interlayer Exciton Generation in Van der Waals Materials via Janus Layers.
    Torun E; Paleari F; Milošević MV; Wirtz L; Sevik C
    Nano Lett; 2023 Apr; 23(8):3159-3166. PubMed ID: 37037187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic and magnetic properties of the Janus MoSSe/WSSe superlattice nanoribbon: a first-principles study.
    Yu L; Sun S; Ye X
    Phys Chem Chem Phys; 2020 Jan; 22(4):2498-2508. PubMed ID: 31939967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonon transport in Janus monolayer MoSSe: a first-principles study.
    Guo SD
    Phys Chem Chem Phys; 2018 Mar; 20(10):7236-7242. PubMed ID: 29484328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mirror asymmetry induced nontrivial properties of polar WSSe/MoSSe heterostructures.
    Wang Y; Wei W; Huang B; Dai Y
    J Phys Condens Matter; 2019 Mar; 31(12):125003. PubMed ID: 30654357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Exciton Complexes in Charge-Tunable Janus W
    Feuer MSG; Montblanch AR; Sayyad MY; Purser CM; Qin Y; Alexeev EM; Cadore AR; Rosa BLT; Kerfoot J; Mostaani E; Kalȩba R; Kolari P; Kopaczek J; Watanabe K; Taniguchi T; Ferrari AC; Kara DM; Tongay S; Atatüre M
    ACS Nano; 2023 Apr; 17(8):7326-7334. PubMed ID: 37058341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low Energy Implantation into Transition-Metal Dichalcogenide Monolayers to Form Janus Structures.
    Lin YC; Liu C; Yu Y; Zarkadoula E; Yoon M; Puretzky AA; Liang L; Kong X; Gu Y; Strasser A; Meyer HM; Lorenz M; Chisholm MF; Ivanov IN; Rouleau CM; Duscher G; Xiao K; Geohegan DB
    ACS Nano; 2020 Apr; 14(4):3896-3906. PubMed ID: 32150384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic lifetime of higher excitonic states in tungsten diselenide monolayers.
    Brem S; Zipfel J; Selig M; Raja A; Waldecker L; Ziegler JD; Taniguchi T; Watanabe K; Chernikov A; Malic E
    Nanoscale; 2019 Jul; 11(25):12381-12387. PubMed ID: 31215947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides.
    Palummo M; Bernardi M; Grossman JC
    Nano Lett; 2015 May; 15(5):2794-800. PubMed ID: 25798735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton Relaxation Cascade in two-dimensional Transition Metal Dichalcogenides.
    Brem S; Selig M; Berghaeuser G; Malic E
    Sci Rep; 2018 May; 8(1):8238. PubMed ID: 29844321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.