BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33405934)

  • 21. Rolling the WSSe Bilayer into Double-Walled Nanotube for the Enhanced Photocatalytic Water-Splitting Performance.
    Ju L; Qin J; Shi L; Yang G; Zhang J; Sun L
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33799663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Out-of-plane dipole-modulated photogenerated carrier separation and recombination at Janus-MoSSe/MoS
    Liu X; Zeng H; Wang G; Cheng X; Yang SA; Zhang H
    Phys Chem Chem Phys; 2022 May; 24(19):11743-11757. PubMed ID: 35506686
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational Study of Janus Transition Metal Dichalcogenide Monolayers for Acetone Gas Sensing.
    Yeh CH
    ACS Omega; 2020 Dec; 5(48):31398-31406. PubMed ID: 33324851
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating strain and doping of Janus MoSSe from phonon mode shifts supported by
    Schmeink J; Musytschuk V; Pollmann E; Sleziona S; Maas A; Kratzer P; Schleberger M
    Nanoscale; 2023 Jun; 15(25):10834-10841. PubMed ID: 37335022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect.
    Park KD; Jiang T; Clark G; Xu X; Raschke MB
    Nat Nanotechnol; 2018 Jan; 13(1):59-64. PubMed ID: 29158602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Janus monolayers of transition metal dichalcogenides.
    Lu AY; Zhu H; Xiao J; Chuu CP; Han Y; Chiu MH; Cheng CC; Yang CW; Wei KH; Yang Y; Wang Y; Sokaras D; Nordlund D; Yang P; Muller DA; Chou MY; Zhang X; Li LJ
    Nat Nanotechnol; 2017 Aug; 12(8):744-749. PubMed ID: 28507333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of external electric field on the sensing property of volatile organic compounds over Janus MoSSe monolayer: a first-principles investigation.
    Yeh CH; Chen YT; Hsieh DW
    RSC Adv; 2021 Oct; 11(53):33276-33287. PubMed ID: 35497532
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures.
    Idrees M; Din HU; Ali R; Rehman G; Hussain T; Nguyen CV; Ahmad I; Amin B
    Phys Chem Chem Phys; 2019 Aug; 21(34):18612-18621. PubMed ID: 31414085
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Raman Spectroscopy of Janus MoSSe Monolayer Polymorph Modifications Using Density Functional Theory.
    Oreshonkov AS; Sukhanova EV; Popov ZI
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic and optical properties of two-dimensional heterostructures based on Janus XSSe (X = Mo, W) and Mg(OH)
    Lou J; Ren K; Huang Z; Huo W; Zhu Z; Yu J
    RSC Adv; 2021 Sep; 11(47):29576-29584. PubMed ID: 35479544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing excitons in transition metal dichalcogenides by Drude-like exciton intraband absorption.
    Zhao S; He D; He J; Zhang X; Yi L; Wang Y; Zhao H
    Nanoscale; 2018 May; 10(20):9538-9546. PubMed ID: 29745949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excitonic instability in transition metal dichalcogenides.
    Martins Quintela MFC; Costa AT; Peres NMR
    J Phys Condens Matter; 2022 Sep; 34(45):. PubMed ID: 36063813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancement of Exciton-Phonon Scattering from Monolayer to Bilayer WS
    Raja A; Selig M; Berghäuser G; Yu J; Hill HM; Rigosi AF; Brus LE; Knorr A; Heinz TF; Malic E; Chernikov A
    Nano Lett; 2018 Oct; 18(10):6135-6143. PubMed ID: 30096239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exciton formation in monolayer transition metal dichalcogenides.
    Ceballos F; Cui Q; Bellus MZ; Zhao H
    Nanoscale; 2016 Jun; 8(22):11681-8. PubMed ID: 27219022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reaching the Excitonic Limit in 2D Janus Monolayers by In Situ Deterministic Growth.
    Qin Y; Sayyad M; Montblanch AR; Feuer MSG; Dey D; Blei M; Sailus R; Kara DM; Shen Y; Yang S; Botana AS; Atature M; Tongay S
    Adv Mater; 2022 Feb; 34(6):e2106222. PubMed ID: 34813678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Narrow Excitonic Lines and Large-Scale Homogeneity of Transition-Metal Dichalcogenide Monolayers Grown by Molecular Beam Epitaxy on Hexagonal Boron Nitride.
    Pacuski W; Grzeszczyk M; Nogajewski K; Bogucki A; Oreszczuk K; Kucharek J; Połczyńska KE; Seredyński B; Rodek A; Bożek R; Taniguchi T; Watanabe K; Kret S; Sadowski J; Kazimierczuk T; Potemski M; Kossacki P
    Nano Lett; 2020 May; 20(5):3058-3066. PubMed ID: 32105481
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lattice-distorted lithiation behavior of a square phase Janus MoSSe monolayer for electrode applications.
    Tang X; Ye H; Liu W; Liu Y; Guo Z; Wang M
    Nanoscale Adv; 2021 May; 3(10):2902-2910. PubMed ID: 36134199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-Time Diagnostics of 2D Crystal Transformations by Pulsed Laser Deposition: Controlled Synthesis of Janus WSSe Monolayers and Alloys.
    Harris SB; Lin YC; Puretzky AA; Liang L; Dyck O; Berlijn T; Eres G; Rouleau CM; Xiao K; Geohegan DB
    ACS Nano; 2023 Feb; 17(3):2472-2486. PubMed ID: 36649648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bilayers of Janus WSSe: monitoring the stacking type via the vibrational spectrum.
    Kandemir A; Sahin H
    Phys Chem Chem Phys; 2018 Jun; 20(25):17380-17386. PubMed ID: 29905346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of an extremely long exciton lifetime in a Janus-MoSTe monolayer.
    Jin H; Wang T; Gong ZR; Long C; Dai Y
    Nanoscale; 2018 Nov; 10(41):19310-19315. PubMed ID: 30168571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.