These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 33406053)
1. Nowcasting for Real-Time COVID-19 Tracking in New York City: An Evaluation Using Reportable Disease Data From Early in the Pandemic. Greene SK; McGough SF; Culp GM; Graf LE; Lipsitch M; Menzies NA; Kahn R JMIR Public Health Surveill; 2021 Jan; 7(1):e25538. PubMed ID: 33406053 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of Nowcasting for Real-Time COVID-19 Tracking - New York City, March-May 2020. Greene SK; McGough SF; Culp GM; Graf LE; Lipsitch M; Menzies NA; Kahn R medRxiv; 2020 Oct; ():. PubMed ID: 33106814 [TBL] [Abstract][Full Text] [Related]
3. Nowcasting the COVID-19 pandemic in Bavaria. Günther F; Bender A; Katz K; Küchenhoff H; Höhle M Biom J; 2021 Mar; 63(3):490-502. PubMed ID: 33258177 [TBL] [Abstract][Full Text] [Related]
4. Nowcasting by Bayesian Smoothing: A flexible, generalizable model for real-time epidemic tracking. McGough SF; Johansson MA; Lipsitch M; Menzies NA PLoS Comput Biol; 2020 Apr; 16(4):e1007735. PubMed ID: 32251464 [TBL] [Abstract][Full Text] [Related]
5. Collaborative nowcasting of COVID-19 hospitalization incidences in Germany. Wolffram D; Abbott S; An der Heiden M; Funk S; Günther F; Hailer D; Heyder S; Hotz T; van de Kassteele J; Küchenhoff H; Müller-Hansen S; Syliqi D; Ullrich A; Weigert M; Schienle M; Bracher J PLoS Comput Biol; 2023 Aug; 19(8):e1011394. PubMed ID: 37566642 [TBL] [Abstract][Full Text] [Related]
6. Bayesian nowcasting with leading indicators applied to COVID-19 fatalities in Sweden. Bergström F; Günther F; Höhle M; Britton T PLoS Comput Biol; 2022 Dec; 18(12):e1010767. PubMed ID: 36477048 [TBL] [Abstract][Full Text] [Related]
7. Increasing situational awareness through nowcasting of the reproduction number. Bizzotto A; Guzzetta G; Marziano V; Del Manso M; Mateo Urdiales A; Petrone D; Cannone A; Sacco C; Poletti P; Manica M; Zardini A; Trentini F; Fabiani M; Bella A; Riccardo F; Pezzotti P; Ajelli M; Merler S Front Public Health; 2024; 12():1430920. PubMed ID: 39234082 [TBL] [Abstract][Full Text] [Related]
9. Short-Range Forecasting of COVID-19 During Early Onset at County, Health District, and State Geographic Levels Using Seven Methods: Comparative Forecasting Study. Lynch CJ; Gore R J Med Internet Res; 2021 Mar; 23(3):e24925. PubMed ID: 33621186 [TBL] [Abstract][Full Text] [Related]
10. Timely epidemic monitoring in the presence of reporting delays: anticipating the COVID-19 surge in New York City, September 2020. Harris JE BMC Public Health; 2022 May; 22(1):871. PubMed ID: 35501734 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Bayesian spatiotemporal infectious disease models for prospective surveillance analysis. Kim J; Lawson AB; Neelon B; Korte JE; Eberth JM; Chowell G BMC Med Res Methodol; 2023 Jul; 23(1):171. PubMed ID: 37481553 [TBL] [Abstract][Full Text] [Related]
12. Delay in death reporting affects timely monitoring and modeling of the COVID-19 pandemic. Carvalho CA; Carvalho VA; Campos MAG; Oliveira BLCA; Diniz EM; Santos AMD; Souza BF; Silva AAMD Cad Saude Publica; 2021; 37(7):e00292320. PubMed ID: 34406216 [TBL] [Abstract][Full Text] [Related]
13. Generative Bayesian modeling to nowcast the effective reproduction number from line list data with missing symptom onset dates. Lison A; Abbott S; Huisman J; Stadler T PLoS Comput Biol; 2024 Apr; 20(4):e1012021. PubMed ID: 38626217 [TBL] [Abstract][Full Text] [Related]
14. Predictive power of wastewater for nowcasting infectious disease transmission: A retrospective case study of five sewershed areas in Louisville, Kentucky. Klaassen F; Holm RH; Smith T; Cohen T; Bhatnagar A; Menzies NA Environ Res; 2024 Jan; 240(Pt 2):117395. PubMed ID: 37838198 [TBL] [Abstract][Full Text] [Related]
15. A machine learning model for nowcasting epidemic incidence. Sahai SY; Gurukar S; KhudaBukhsh WR; Parthasarathy S; Rempała GA Math Biosci; 2022 Jan; 343():108677. PubMed ID: 34848217 [TBL] [Abstract][Full Text] [Related]
16. Estimating the infection-fatality risk of SARS-CoV-2 in New York City during the spring 2020 pandemic wave: a model-based analysis. Yang W; Kandula S; Huynh M; Greene SK; Van Wye G; Li W; Chan HT; McGibbon E; Yeung A; Olson D; Fine A; Shaman J Lancet Infect Dis; 2021 Feb; 21(2):203-212. PubMed ID: 33091374 [TBL] [Abstract][Full Text] [Related]
17. Nowcasting and forecasting the 2022 U.S. mpox outbreak: Support for public health decision making and lessons learned. Charniga K; Madewell ZJ; Masters NB; Asher J; Nakazawa Y; Spicknall IH Epidemics; 2024 Jun; 47():100755. PubMed ID: 38452454 [TBL] [Abstract][Full Text] [Related]
18. Surveillance Metrics of SARS-CoV-2 Transmission in Central Asia: Longitudinal Trend Analysis. Post LA; Benishay ET; Moss CB; Murphy RL; Achenbach CJ; Ison MG; Resnick D; Singh LN; White J; Chaudhury AS; Boctor MJ; Welch SB; Oehmke JF J Med Internet Res; 2021 Feb; 23(2):e25799. PubMed ID: 33475513 [TBL] [Abstract][Full Text] [Related]
19. Prospective Spatiotemporal Cluster Detection Using SaTScan: Tutorial for Designing and Fine-Tuning a System to Detect Reportable Communicable Disease Outbreaks. Levin-Rector A; Kulldorff M; Peterson ER; Hostovich S; Greene SK JMIR Public Health Surveill; 2024 Jun; 10():e50653. PubMed ID: 38861711 [TBL] [Abstract][Full Text] [Related]
20. A Bayesian Spatiotemporal Nowcasting Model for Public Health Decision-Making and Surveillance. Kline D; Hyder A; Liu E; Rayo M; Malloy S; Root E Am J Epidemiol; 2022 May; 191(6):1107-1115. PubMed ID: 35225333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]