These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 33406180)

  • 1. Correction: Largely enhanced thermoelectric effect and pure spin current in silicene-based devices under hydrogen modification.
    Qiao G; Tan FX; Yang LY; Yang XF; Liu YS
    Nanoscale; 2021 Jan; 13(2):1364. PubMed ID: 33406180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Largely enhanced thermoelectric effect and pure spin current in silicene-based devices under hydrogen modification.
    Qiao Q; Tan FX; Yang LY; Yang XF; Liu YS
    Nanoscale; 2020 Jan; 12(1):277-288. PubMed ID: 31825044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced thermoelectric efficiency in ferromagnetic silicene nanoribbons terminated with hydrogen atoms.
    Zberecki K; Swirkowicz R; Wierzbicki M; Barnaś J
    Phys Chem Chem Phys; 2014 Jul; 16(25):12900-8. PubMed ID: 24848750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoelectric Penta-Silicene with a High Room-Temperature Figure of Merit.
    Gao Z; Wang JS
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14298-14307. PubMed ID: 32125819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pure thermal spin current and perfect spin-filtering with negative differential thermoelectric resistance induced by proximity effect in graphene/silicene junctions.
    Gholami Z; Khoeini F
    Sci Rep; 2021 Jan; 11(1):104. PubMed ID: 33420296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-functional spintronic devices based on boron- or aluminum-doped silicene nanoribbons.
    Liu YS; Dong YJ; Zhang J; Yu HL; Feng JF; Yang XF
    Nanotechnology; 2018 Mar; 29(12):125201. PubMed ID: 29355833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the thermoelectric response of silicene nanoribbons with vacancies.
    Núñez C; Saiz-Bretín M; Orellana PA; Rosales L; Domínguez-Adame F
    J Phys Condens Matter; 2020 Jun; 32(27):275301. PubMed ID: 32155600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin effects in thermoelectric phenomena in SiC nanoribbons.
    Zberecki K; Swirkowicz R; Wierzbicki M; Barnaś J
    Phys Chem Chem Phys; 2015 Jan; 17(3):1925-33. PubMed ID: 25473937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced thermoelectric efficiency of porous silicene nanoribbons.
    Sadeghi H; Sangtarash S; Lambert CJ
    Sci Rep; 2015 Mar; 5():9514. PubMed ID: 25820162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zigzag nanoribbons of two-dimensional silicene-like crystals: magnetic, topological and thermoelectric properties.
    Wierzbicki M; Barnaś J; Swirkowicz R
    J Phys Condens Matter; 2015 Dec; 27(48):485301. PubMed ID: 26565114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain induced spin-splitting and half-metallicity in antiferromagnetic bilayer silicene under bending.
    Shi JL; Wang Y; Zhao XJ; Zhang YZ; Yuan S; Wei SH; Zhang DB
    Phys Chem Chem Phys; 2020 May; 22(20):11567-11571. PubMed ID: 32400823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermoelectric properties of armchair and zigzag silicene nanoribbons.
    Pan L; Liu HJ; Tan XJ; Lv HY; Shi J; Tang XF; Zheng G
    Phys Chem Chem Phys; 2012 Oct; 14(39):13588-93. PubMed ID: 22965156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust generation of half-metallic transport and pure spin current with photogalvanic effect in zigzag silicene nanoribbons.
    Jiang P; Kang L; Tao X; Cao N; Hao H; Zheng X; Zhang L; Zeng Z
    J Phys Condens Matter; 2019 Dec; 31(49):495701. PubMed ID: 31437823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonon thermal transport in silicene-germanene superlattice: a molecular dynamics study.
    Wang X; Hong Y; Chan PKL; Zhang J
    Nanotechnology; 2017 Jun; 28(25):255403. PubMed ID: 28486215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical controllable spin pump based on a zigzag silicene nanoribbon junction.
    Zhang L; Tong P
    J Phys Condens Matter; 2017 Dec; 29(49):495303. PubMed ID: 29095145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extrinsic Rashba spin-orbit coupling effect on silicene spin polarized field effect transistors.
    Pournaghavi N; Esmaeilzadeh M; Abrishamifar A; Ahmadi S
    J Phys Condens Matter; 2017 Apr; 29(14):145501. PubMed ID: 28106534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicene, silicene derivatives, and their device applications.
    Molle A; Grazianetti C; Tao L; Taneja D; Alam MH; Akinwande D
    Chem Soc Rev; 2018 Aug; 47(16):6370-6387. PubMed ID: 30065980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible nanocrystal-coated glass fibers for high-performance thermoelectric energy harvesting.
    Liang D; Yang H; Finefrock SW; Wu Y
    Nano Lett; 2012 Apr; 12(4):2140-5. PubMed ID: 22409308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of large spin and valley currents in a quantum pump based on molybdenum disulfide.
    Khani H; Esmaeilzadeh M; Kanjouri F
    Phys Chem Chem Phys; 2017 May; 19(21):14170-14177. PubMed ID: 28530291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Prediction of Ultralow Lattice Thermal Conductivity of Dumbbell Silicene: A Comparison with Low-Buckled Silicene.
    Peng B; Zhang H; Shao H; Xu Y; Zhang R; Lu H; Zhang DW; Zhu H
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20977-85. PubMed ID: 27460331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.