These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3340620)

  • 21. Mechanism of low-density lipoprotein oxidation by hemoglobin-derived iron.
    Grinshtein N; Bamm VV; Tsemakhovich VA; Shaklai N
    Biochemistry; 2003 Jun; 42(23):6977-85. PubMed ID: 12795592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluoride-dependent conversion of organic compounds mediated by manganese peroxidases in the absence of Mn(2+) ions.
    Ye L; Spiteller D; Ullrich R; Boland W; Nüske J; Diekert G
    Biochemistry; 2010 Aug; 49(34):7264-71. PubMed ID: 20666406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparative reactivity study of microperoxidases based on hemin, mesohemin and deuterohemin.
    Ryabova ES; Rydberg P; Kolberg M; Harbitz E; Barra AL; Ryde U; Andersson KK; Nordlander E
    J Inorg Biochem; 2005 Mar; 99(3):852-63. PubMed ID: 15708807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of simultaneous iodination and coupling catalyzed by thyroid peroxidase.
    Taurog A; Dorris ML; Doerge DR
    Arch Biochem Biophys; 1996 Jun; 330(1):24-32. PubMed ID: 8651700
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuromelanogenic and cytotoxic properties of canine brainstem peroxidase.
    Grisham MB; Perez VJ; Everse J
    J Neurochem; 1987 Mar; 48(3):876-82. PubMed ID: 3027261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. X-ray absorption studies of myoglobin peroxide reveal functional differences between globins and heme enzymes.
    Chance M; Powers L; Kumar C; Chance B
    Biochemistry; 1986 Mar; 25(6):1259-65. PubMed ID: 3964675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cationic ascorbate peroxidase isoenzyme II from tea: structural insights into the heme pocket of a unique hybrid peroxidase.
    Heering HA; Jansen MA; Thorneley RN; Smulevich G
    Biochemistry; 2001 Aug; 40(34):10360-70. PubMed ID: 11513615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytotoxic properties of salivary oxidants.
    Grisham MB; Ryan EM
    Am J Physiol; 1990 Jan; 258(1 Pt 1):C115-21. PubMed ID: 2154109
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidation of halides by peroxidases and their subsequent reductions.
    Shah MM; Aust SD
    Arch Biochem Biophys; 1993 Jan; 300(1):253-7. PubMed ID: 8424660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mechanism of spontaneous heme release from horseradish peroxidase isoenzyme A2.
    Smith ML; Hjortsberg K; Ohlsson PI; Paul KG
    Biomed Biochim Acta; 1983; 42(7-8):805-11. PubMed ID: 6651805
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The horseradish peroxidase-catalyzed oxidation of iodide. Outline of the mechanism.
    Björkstén F
    Biochim Biophys Acta; 1970 Sep; 212(3):396-406. PubMed ID: 5456990
    [No Abstract]   [Full Text] [Related]  

  • 32. Mechanism-based inactivation of horseradish peroxidase by sodium azide. Formation of meso-azidoprotoporphyrin IX.
    Ortiz de Montellano PR; David SK; Ator MA; Tew D
    Biochemistry; 1988 Jul; 27(15):5470-6. PubMed ID: 3179265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ligand and halide binding properties of chloroperoxidase: peroxidase-type active site heme environment with cytochrome P-450 type endogenous axial ligand and spectroscopic properties.
    Sono M; Dawson JH; Hall K; Hager LP
    Biochemistry; 1986 Jan; 25(2):347-56. PubMed ID: 3955002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extremely high stability of African oil palm tree peroxidase.
    Sakharov IY; Sakharova IV
    Biochim Biophys Acta; 2002 Jul; 1598(1-2):108-14. PubMed ID: 12147350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of inactivation of thyroid peroxidase by thioureylene drugs.
    Engler H; Taurog A; Nakashima T
    Biochem Pharmacol; 1982 Dec; 31(23):3801-6. PubMed ID: 6186257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proximal ligand control of heme iron coordination structure and reactivity with hydrogen peroxide: investigations of the myoglobin cavity mutant H93G with unnatural oxygen donor proximal ligands.
    Roach MP; Puspita WJ; Watanabe Y
    J Inorg Biochem; 2000 Aug; 81(3):173-82. PubMed ID: 11051562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A study of the K(+)-site mutant of ascorbate peroxidase: mutations of protein residues on the proximal side of the heme cause changes in iron ligation on the distal side.
    Cheek J; Mandelman D; Poulos TL; Dawson JH
    J Biol Inorg Chem; 1999 Feb; 4(1):64-72. PubMed ID: 10499104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hemozymes peroxidase activity of artificial hemoproteins constructed from the Streptomyces lividans xylanase A and iron(III)-carboxy-substituted porphyrins.
    Ricoux R; Dubuc R; Dupont C; Marechal JD; Martin A; Sellier M; Mahy JP
    Bioconjug Chem; 2008 Apr; 19(4):899-910. PubMed ID: 18324756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heme-protein covalent bonds in peroxidases and resistance to heme modification during halide oxidation.
    Huang L; Ortiz de Montellano PR
    Arch Biochem Biophys; 2006 Feb; 446(1):77-83. PubMed ID: 16375846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heme accessibility in the ferricytochrome c-cytochrome c peroxidase complex.
    Hoth LR; Erman JE
    Biochim Biophys Acta; 1984 Jul; 788(1):151-3. PubMed ID: 6331511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.