These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Controlling the Isomerization of Photoresponsive Molecules through a Limiting Tautomerization Strategy. Duan Y; Zhao H; Xue G; Sun F; Stricker F; Wang Z; Mao L; He C; de Alaniz JR; Zheng Y; Wang D J Phys Chem B; 2022 May; 126(17):3347-3354. PubMed ID: 35471969 [TBL] [Abstract][Full Text] [Related]
4. A simple strategy to overcome concentration dependence of photoswitching properties in donor-acceptor Stenhouse adducts. Connolly SW; Tiwari R; Holder SJ; Shepherd HJ Phys Chem Chem Phys; 2021 Feb; 23(4):2775-2779. PubMed ID: 33492320 [TBL] [Abstract][Full Text] [Related]
5. Unexpected Acid-Triggered Formation of Reversibly Photoswitchable Stenhouse Salts from Donor-Acceptor Stenhouse Adducts. Shpinov Y; Schlichter A; Pelupessy P; Le Saux T; Jullien L; Adelizzi B Chemistry; 2022 May; 28(28):e202200497. PubMed ID: 35218266 [TBL] [Abstract][Full Text] [Related]
6. Donor-Acceptor Stenhouse Adduct-Polydimethylsiloxane-Conjugates for Enhanced Photoswitching in Bulk Polymers. Clerc M; Tekin C; Ulrich S; Freire RVM; Salentinig S; Bruns N; Boesel LF Macromol Rapid Commun; 2022 Aug; 43(15):e2200120. PubMed ID: 35396766 [TBL] [Abstract][Full Text] [Related]
7. Structure-function relationships of donor-acceptor Stenhouse adduct photochromic switches. Mallo N; Foley ED; Iranmanesh H; Kennedy ADW; Luis ET; Ho J; Harper JB; Beves JE Chem Sci; 2018 Nov; 9(43):8242-8252. PubMed ID: 30542573 [TBL] [Abstract][Full Text] [Related]
8. Controlling Dark Equilibria and Enhancing Donor-Acceptor Stenhouse Adduct Photoswitching Properties through Carbon Acid Design. Hemmer JR; Page ZA; Clark KD; Stricker F; Dolinski ND; Hawker CJ; Read de Alaniz J J Am Chem Soc; 2018 Aug; 140(33):10425-10429. PubMed ID: 30074782 [TBL] [Abstract][Full Text] [Related]
9. Solvent Effects on the Actinic Step of Donor-Acceptor Stenhouse Adduct Photoswitching. Lerch MM; Di Donato M; Laurent AD; Medved' M; Iagatti A; Bussotti L; Lapini A; Buma WJ; Foggi P; Szymański W; Feringa BL Angew Chem Int Ed Engl; 2018 Jul; 57(27):8063-8068. PubMed ID: 29845699 [TBL] [Abstract][Full Text] [Related]
13. Fabricating and Modulating Robust Multi-Photoaddressable Systems with the Derivatives of Diarylethylene and Donor-Acceptor Stenhouse Adducts. Zhang J; Zhang J; Teng X; Liu X; Jiao X; Li Y; Xie X; Yan Q; Wang X; Tang B J Phys Chem Lett; 2022 Apr; 13(16):3611-3620. PubMed ID: 35427145 [TBL] [Abstract][Full Text] [Related]
14. Controlling Isomerization of Photoswitches to Modulate 2D Logic-in-Memory Devices by Organic-Inorganic Interfacial Strategy. Duan Y; Song M; Sun F; Xu Y; Shi F; Wang H; Zheng Y; He C; Liu X; Wei C; Deng X; Chen L; Liu F; Wang D Adv Sci (Weinh); 2023 May; 10(13):e2207443. PubMed ID: 36905234 [TBL] [Abstract][Full Text] [Related]
15. Shedding Light on the Photoisomerization Pathway of Donor-Acceptor Stenhouse Adducts. Di Donato M; Lerch MM; Lapini A; Laurent AD; Iagatti A; Bussotti L; Ihrig SP; Medved' M; Jacquemin D; Szymański W; Buma WJ; Foggi P; Feringa BL J Am Chem Soc; 2017 Nov; 139(44):15596-15599. PubMed ID: 29039920 [TBL] [Abstract][Full Text] [Related]
16. Redesigning donor-acceptor Stenhouse adduct photoswitches through a joint experimental and computational study. Berraud-Pache R; Santamaría-Aranda E; de Souza B; Bistoni G; Neese F; Sampedro D; Izsák R Chem Sci; 2021 Jan; 12(8):2916-2924. PubMed ID: 34164058 [TBL] [Abstract][Full Text] [Related]