BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33406388)

  • 1. A comprehensive binding study illustrates ligand recognition in the periplasmic binding protein PotF.
    Kröger P; Shanmugaratnam S; Ferruz N; Schweimer K; Höcker B
    Structure; 2021 May; 29(5):433-443.e4. PubMed ID: 33406388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in protein-ligand specificity through binding pocket grafting.
    Scheib U; Shanmugaratnam S; Farías-Rico JA; Höcker B
    J Struct Biol; 2014 Feb; 185(2):186-92. PubMed ID: 23792166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine-tuning spermidine binding modes in the putrescine binding protein PotF.
    Kröger P; Shanmugaratnam S; Scheib U; Höcker B
    J Biol Chem; 2021 Dec; 297(6):101419. PubMed ID: 34801550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of substrate binding specificity revealed by the crystal structures of polyamine receptors SpuD and SpuE from Pseudomonas aeruginosa.
    Wu D; Lim SC; Dong Y; Wu J; Tao F; Zhou L; Zhang LH; Song H
    J Mol Biol; 2012 Mar; 416(5):697-712. PubMed ID: 22300763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure and mutational analysis of the Escherichia coli putrescine receptor. Structural basis for substrate specificity.
    Vassylyev DG; Tomitori H; Kashiwagi K; Morikawa K; Igarashi K
    J Biol Chem; 1998 Jul; 273(28):17604-9. PubMed ID: 9651355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyamine transport in bacteria and yeast.
    Igarashi K; Kashiwagi K
    Biochem J; 1999 Dec; 344 Pt 3(Pt 3):633-42. PubMed ID: 10585849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-free open-closed transitions of periplasmic binding proteins: the case of glutamine-binding protein.
    Bermejo GA; Strub MP; Ho C; Tjandra N
    Biochemistry; 2010 Mar; 49(9):1893-902. PubMed ID: 20141110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization and preliminary X-ray analysis of the periplasmic receptor (PotF) of the putrescine transport system in Escherichia coli.
    Vassylyev DG; Kashiwagi T; Tomitori H; Kashiwagi K; Igarashi K; Morikawa K
    Acta Crystallogr D Biol Crystallogr; 1998 Jan; 54(Pt 1):132-4. PubMed ID: 9761835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and biochemical basis for polyamine binding to the Tp0655 lipoprotein of Treponema pallidum: putative role for Tp0655 (TpPotD) as a polyamine receptor.
    Machius M; Brautigam CA; Tomchick DR; Ward P; Otwinowski Z; Blevins JS; Deka RK; Norgard MV
    J Mol Biol; 2007 Oct; 373(3):681-94. PubMed ID: 17868688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the two structural domains from the periplasmic Escherichia coli histidine-binding protein HisJ.
    Chu BC; DeWolf T; Vogel HJ
    J Biol Chem; 2013 Nov; 288(44):31409-22. PubMed ID: 24036119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trapping open and closed forms of FitE: a group III periplasmic binding protein.
    Shi R; Proteau A; Wagner J; Cui Q; Purisima EO; Matte A; Cygler M
    Proteins; 2009 May; 75(3):598-609. PubMed ID: 19004000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opening and closing motions in the periplasmic vitamin B12 binding protein BtuF.
    Kandt C; Xu Z; Tieleman DP
    Biochemistry; 2006 Nov; 45(44):13284-92. PubMed ID: 17073449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the binding of compatible solutes by ProX from the hyperthermophilic archaeon Archaeoglobus fulgidus.
    Schiefner A; Holtmann G; Diederichs K; Welte W; Bremer E
    J Biol Chem; 2004 Nov; 279(46):48270-81. PubMed ID: 15308642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An unconventional ligand-binding mechanism of substrate-binding proteins: MD simulation and Markov state model analysis of BtuF.
    Wang D; Weng J; Wang W
    J Comput Chem; 2019 May; 40(14):1440-1448. PubMed ID: 30747434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of the BtuF periplasmic-binding protein for vitamin B12 suggest a functionally important reduction in protein mobility upon ligand binding.
    Karpowich NK; Huang HH; Smith PC; Hunt JF
    J Biol Chem; 2003 Mar; 278(10):8429-34. PubMed ID: 12468528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of putrescine uptake by PotFGHI and PuuP and their physiological significance in Escherichia coli.
    Terui Y; Saroj SD; Sakamoto A; Yoshida T; Higashi K; Kurihara S; Suzuki H; Toida T; Kashiwagi K; Igarashi K
    Amino Acids; 2014 Mar; 46(3):661-70. PubMed ID: 23719730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periplasmic loop P2 of the MalF subunit of the maltose ATP binding cassette transporter is sufficient to bind the maltose binding protein MalE.
    Jacso T; Grote M; Daus ML; Schmieder P; Keller S; Schneider E; Reif B
    Biochemistry; 2009 Mar; 48(10):2216-25. PubMed ID: 19159328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for binding and transfer of heme in bacterial heme-acquisition systems.
    Naoe Y; Nakamura N; Rahman MM; Tosha T; Nagatoishi S; Tsumoto K; Shiro Y; Sugimoto H
    Proteins; 2017 Dec; 85(12):2217-2230. PubMed ID: 28913898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-induced conformational changes in a thermophilic ribose-binding protein.
    Cuneo MJ; Beese LS; Hellinga HW
    BMC Struct Biol; 2008 Nov; 8():50. PubMed ID: 19019243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The solution structure, binding properties, and dynamics of the bacterial siderophore-binding protein FepB.
    Chu BC; Otten R; Krewulak KD; Mulder FA; Vogel HJ
    J Biol Chem; 2014 Oct; 289(42):29219-34. PubMed ID: 25173704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.