BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 33406413)

  • 21. Molecular events in neuroendocrine prostate cancer development.
    Wang Y; Wang Y; Ci X; Choi SYC; Crea F; Lin D; Wang Y
    Nat Rev Urol; 2021 Oct; 18(10):581-596. PubMed ID: 34290447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibiting geranylgeranyl diphosphate synthesis reduces nuclear androgen receptor signaling and neuroendocrine differentiation in prostate cancer cell models.
    Weissenrieder JS; Reilly JE; Neighbors JD; Hohl RJ
    Prostate; 2019 Jan; 79(1):21-30. PubMed ID: 30106164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Androgen receptor-independent function of FoxA1 in prostate cancer metastasis.
    Jin HJ; Zhao JC; Ogden I; Bergan RC; Yu J
    Cancer Res; 2013 Jun; 73(12):3725-36. PubMed ID: 23539448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alternative RNA splicing of the GIT1 gene is associated with neuroendocrine prostate cancer.
    Lee AR; Gan Y; Xie N; Ramnarine VR; Lovnicki JM; Dong X
    Cancer Sci; 2019 Jan; 110(1):245-255. PubMed ID: 30417466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Establishment and characterization of a novel treatment-related neuroendocrine prostate cancer cell line KUCaP13.
    Okasho K; Mizuno K; Fukui T; Lin YY; Kamiyama Y; Sunada T; Li X; Kimura H; Sumiyoshi T; Goto T; Kobayashi T; Lin D; Wang Y; Collins CC; Inoue T; Ogawa O; Akamatsu S
    Cancer Sci; 2021 Jul; 112(7):2781-2791. PubMed ID: 33960594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Histone demethylase PHF8 drives neuroendocrine prostate cancer progression by epigenetically upregulating FOXA2.
    Liu Q; Pang J; Wang LA; Huang Z; Xu J; Yang X; Xie Q; Huang Y; Tang T; Tong D; Liu G; Wang L; Zhang D; Ma Q; Xiao H; Lan W; Qin J; Jiang J
    J Pathol; 2021 Jan; 253(1):106-118. PubMed ID: 33009820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross modulation between the androgen receptor axis and protocadherin-PC in mediating neuroendocrine transdifferentiation and therapeutic resistance of prostate cancer.
    Terry S; Maillé P; Baaddi H; Kheuang L; Soyeux P; Nicolaiew N; Ceraline J; Firlej V; Beltran H; Allory Y; de la Taille A; Vacherot F
    Neoplasia; 2013 Jul; 15(7):761-72. PubMed ID: 23814488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer.
    Berger A; Brady NJ; Bareja R; Robinson B; Conteduca V; Augello MA; Puca L; Ahmed A; Dardenne E; Lu X; Hwang I; Bagadion AM; Sboner A; Elemento O; Paik J; Yu J; Barbieri CE; Dephoure N; Beltran H; Rickman DS
    J Clin Invest; 2019 Jul; 129(9):3924-3940. PubMed ID: 31260412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel mechanism of SRRM4 in promoting neuroendocrine prostate cancer development via a pluripotency gene network.
    Lee AR; Gan Y; Tang Y; Dong X
    EBioMedicine; 2018 Sep; 35():167-177. PubMed ID: 30100395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic characterization of a unique neuroendocrine transdifferentiation prostate circulating tumor cell-derived eXplant model.
    Faugeroux V; Pailler E; Oulhen M; Deas O; Brulle-Soumare L; Hervieu C; Marty V; Alexandrova K; Andree KC; Stoecklein NH; Tramalloni D; Cairo S; NgoCamus M; Nicotra C; Terstappen LWMM; Manaresi N; Lapierre V; Fizazi K; Scoazec JY; Loriot Y; Judde JG; Farace F
    Nat Commun; 2020 Apr; 11(1):1884. PubMed ID: 32313004
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ONECUT2 is a driver of neuroendocrine prostate cancer.
    Guo H; Ci X; Ahmed M; Hua JT; Soares F; Lin D; Puca L; Vosoughi A; Xue H; Li E; Su P; Chen S; Nguyen T; Liang Y; Zhang Y; Xu X; Xu J; Sheahan AV; Ba-Alawi W; Zhang S; Mahamud O; Vellanki RN; Gleave M; Bristow RG; Haibe-Kains B; Poirier JT; Rudin CM; Tsao MS; Wouters BG; Fazli L; Feng FY; Ellis L; van der Kwast T; Berlin A; Koritzinsky M; Boutros PC; Zoubeidi A; Beltran H; Wang Y; He HH
    Nat Commun; 2019 Jan; 10(1):278. PubMed ID: 30655535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Androgen deprivation-induced ZBTB46-PTGS1 signaling promotes neuroendocrine differentiation of prostate cancer.
    Chen WY; Zeng T; Wen YC; Yeh HL; Jiang KC; Chen WH; Zhang Q; Huang J; Liu YN
    Cancer Lett; 2019 Jan; 440-441():35-46. PubMed ID: 30312731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The expression of YAP1 is increased in high-grade prostatic adenocarcinoma but is reduced in neuroendocrine prostate cancer.
    Cheng S; Prieto-Dominguez N; Yang S; Connelly ZM; StPierre S; Rushing B; Watkins A; Shi L; Lakey M; Baiamonte LB; Fazili T; Lurie A; Corey E; Shi R; Yeh Y; Yu X
    Prostate Cancer Prostatic Dis; 2020 Dec; 23(4):661-669. PubMed ID: 32313141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Androgen deprivation upregulates SPINK1 expression and potentiates cellular plasticity in prostate cancer.
    Tiwari R; Manzar N; Bhatia V; Yadav A; Nengroo MA; Datta D; Carskadon S; Gupta N; Sigouros M; Khani F; Poutanen M; Zoubeidi A; Beltran H; Palanisamy N; Ateeq B
    Nat Commun; 2020 Jan; 11(1):384. PubMed ID: 31959826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. FOXA2 drives lineage plasticity and KIT pathway activation in neuroendocrine prostate cancer.
    Han M; Li F; Zhang Y; Dai P; He J; Li Y; Zhu Y; Zheng J; Huang H; Bai F; Gao D
    Cancer Cell; 2022 Nov; 40(11):1306-1323.e8. PubMed ID: 36332622
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice.
    Sun F; Zhang ZW; Tan EM; Lim ZLR; Li Y; Wang XC; Chua SE; Li J; Cheung E; Yong EL
    Carcinogenesis; 2016 Jul; 37(7):701-711. PubMed ID: 27207661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FOXA1 promotes tumor progression in prostate cancer via the insulin-like growth factor binding protein 3 pathway.
    Imamura Y; Sakamoto S; Endo T; Utsumi T; Fuse M; Suyama T; Kawamura K; Imamoto T; Yano K; Uzawa K; Nihei N; Suzuki H; Mizokami A; Ueda T; Seki N; Tanzawa H; Ichikawa T
    PLoS One; 2012; 7(8):e42456. PubMed ID: 22879989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression and role of Foxa proteins in prostate cancer.
    Mirosevich J; Gao N; Gupta A; Shappell SB; Jove R; Matusik RJ
    Prostate; 2006 Jul; 66(10):1013-28. PubMed ID: 16001449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A clinical-grade liquid biomarker detects neuroendocrine differentiation in prostate cancer.
    Zhao SG; Sperger JM; Schehr JL; McKay RR; Emamekhoo H; Singh A; Schultz ZD; Bade RM; Stahlfeld CN; Gilsdorf CS; Hernandez CI; Wolfe SK; Mayberry RD; Krause HM; Bootsma M; Helzer KT; Rydzewski N; Bakhtiar H; Shi Y; Blitzer G; Kyriakopoulos CE; Kosoff D; Wei XX; Floberg J; Sethakorn N; Sharifi M; Harari PM; Huang W; Beltran H; Choueiri TK; Scher HI; Rathkopf DE; Halabi S; Armstrong AJ; Beebe DJ; Yu M; Sundling KE; Taplin ME; Lang JM
    J Clin Invest; 2022 Nov; 132(21):. PubMed ID: 36317634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative study of neuroendocrine acquisition and biomarker expression between neuroendocrine and usual prostatic carcinoma.
    Xiao GQ; Ho G; Suen C; Hurth KM
    Prostate; 2021 Jun; 81(8):469-477. PubMed ID: 33848377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.