BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 33406467)

  • 1. Recent advances in the biological valorization of citrus peel waste into fuels and chemicals.
    Jeong D; Park H; Jang BK; Ju Y; Shin MH; Oh EJ; Lee EJ; Kim SR
    Bioresour Technol; 2021 Mar; 323():124603. PubMed ID: 33406467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of engineered yeast strain fermentation for oligogalacturonides production from pectin-rich waste biomass.
    Yang G; Tan H; Li S; Zhang M; Che J; Li K; Chen W; Yin H
    Bioresour Technol; 2020 Mar; 300():122645. PubMed ID: 31887580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biorefinery for conversion of citrus peel waste into essential oils, pectin, fertilizer and succinic acid via different fermentation strategies.
    Patsalou M; Chrysargyris A; Tzortzakis N; Koutinas M
    Waste Manag; 2020 Jul; 113():469-477. PubMed ID: 32604008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioconversion of citrus waste into mucic acid by xylose-fermenting Saccharomyces cerevisiae.
    Jeong D; Park S; Evelina G; Kim S; Park H; Lee JM; Kim SK; Kim IJ; Oh EJ; Kim SR
    Bioresour Technol; 2024 Feb; 393():130158. PubMed ID: 38070579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous fermentation of galacturonic acid and five-carbon sugars by engineered Saccharomyces cerevisiae.
    Jeong D; Ye S; Park H; Kim SR
    Bioresour Technol; 2020 Jan; 295():122259. PubMed ID: 31639627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Citrus Peel Waste Biorefinery for Ethanol and Methane Production.
    Patsalou M; Samanides CG; Protopapa E; Stavrinou S; Vyrides I; Koutinas M
    Molecules; 2019 Jul; 24(13):. PubMed ID: 31277372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Saccharomyces cerevisiae for co-utilization of D-galacturonic acid and D-glucose from citrus peel waste.
    Protzko RJ; Latimer LN; Martinho Z; de Reus E; Seibert T; Benz JP; Dueber JE
    Nat Commun; 2018 Nov; 9(1):5059. PubMed ID: 30498222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valorization of citrus peel waste for the sustainable production of value-added products.
    Sharma P; Vishvakarma R; Gautam K; Vimal A; Kumar Gaur V; Farooqui A; Varjani S; Younis K
    Bioresour Technol; 2022 May; 351():127064. PubMed ID: 35351555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced ethanol production from pomelo peel waste by integrated hydrothermal treatment, multienzyme formulation, and fed-batch operation.
    Huang R; Cao M; Guo H; Qi W; Su R; He Z
    J Agric Food Chem; 2014 May; 62(20):4643-51. PubMed ID: 24802243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pectin-rich biomass as feedstock for fuel ethanol production.
    Edwards MC; Doran-Peterson J
    Appl Microbiol Biotechnol; 2012 Aug; 95(3):565-75. PubMed ID: 22695801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valorisation of citrus processing waste: A review.
    Zema DA; Calabrò PS; Folino A; Tamburino V; Zappia G; Zimbone SM
    Waste Manag; 2018 Oct; 80():252-273. PubMed ID: 30455006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A citrus waste-based biorefinery as a source of renewable energy: technical advances and analysis of engineering challenges.
    Rivas-Cantu RC; Jones KD; Mills PL
    Waste Manag Res; 2013 Apr; 31(4):413-20. PubMed ID: 23439875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valorisation of pectin-rich agro-industrial residues by yeasts: potential and challenges.
    Martins LC; Monteiro CC; Semedo PM; Sá-Correia I
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6527-6547. PubMed ID: 32474799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pretreatment effects on orange processing waste for making ethanol by simultaneous saccharification and fermentation.
    Widmer W; Zhou W; Grohmann K
    Bioresour Technol; 2010 Jul; 101(14):5242-9. PubMed ID: 20189803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process of fruit peel waste biorefinery: a case study of citrus waste biorefinery, its environmental impacts and recommendations.
    Joglekar SN; Pathak PD; Mandavgane SA; Kulkarni BD
    Environ Sci Pollut Res Int; 2019 Dec; 26(34):34713-34722. PubMed ID: 30645745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upstream processes of citrus fruit waste biorefinery for complete valorization.
    Kim IJ; Jeong D; Kim SR
    Bioresour Technol; 2022 Oct; 362():127776. PubMed ID: 35970501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The introduction of the fungal D-galacturonate pathway enables the consumption of D-galacturonic acid by Saccharomyces cerevisiae.
    Biz A; Sugai-Guérios MH; Kuivanen J; Maaheimo H; Krieger N; Mitchell DA; Richard P
    Microb Cell Fact; 2016 Aug; 15(1):144. PubMed ID: 27538689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sugarcane wastes as microbial feedstocks: A review of the biorefinery framework from resource recovery to production of value-added products.
    Lee H; Jung Sohn Y; Jeon S; Yang H; Son J; Jin Kim Y; Jae Park S
    Bioresour Technol; 2023 May; 376():128879. PubMed ID: 36921642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current progress in valorization of food processing waste and by-products for pectin extraction.
    Kumar S; Konwar J; Purkayastha MD; Kalita S; Mukherjee A; Dutta J
    Int J Biol Macromol; 2023 Jun; 239():124332. PubMed ID: 37028618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated biorefinery approach to valorize citrus waste: A sustainable solution for resource recovery and environmental management.
    Yadav V; Sarker A; Yadav A; Miftah AO; Bilal M; Iqbal HMN
    Chemosphere; 2022 Apr; 293():133459. PubMed ID: 34995629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.