These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 33406596)
1. Development of Geopolymers as Substitutes for Traditional Ceramics for Bricks with Chamotte and Biomass Bottom Ash. Terrones-Saeta JM; Suárez-Macías J; Iglesias-Godino FJ; Corpas-Iglesias FA Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33406596 [TBL] [Abstract][Full Text] [Related]
2. Study of the Incorporation of Biomass Bottom Ashes in Ceramic Materials for the Manufacture of Bricks and Evaluation of Their Leachates. Terrones-Saeta JM; Suárez-Macías J; Iglesias-Godino FJ; Corpas-Iglesias FA Materials (Basel); 2020 May; 13(9):. PubMed ID: 32370083 [TBL] [Abstract][Full Text] [Related]
3. Fuzzy Logic Tools Application to the Characterization of Stress-Strain Processes in Waste Construction Dam Geopolymers: A New Circular Mining. Terrones-Saeta JM; Fortes JC; Luís AT; Aroba J; Díaz-Curiel J; Romero E; Grande JA Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556599 [TBL] [Abstract][Full Text] [Related]
4. Thermal Behaviour of Metakaolin/Fly Ash Geopolymers with Chamotte Aggregate. Rovnaník P; Šafránková K Materials (Basel); 2016 Jun; 9(7):. PubMed ID: 28773657 [TBL] [Abstract][Full Text] [Related]
5. Reuse of Oil Refining Sludge Residue Ash via Alkaline Activation in Matrices of Chamotte or Rice Husk Ash. García-Díaz A; Bueno-Rodríguez S; Pérez-Villarejo L; Eliche-Quesada D Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049095 [TBL] [Abstract][Full Text] [Related]
6. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash. Kalaw ME; Culaba A; Hinode H; Kurniawan W; Gallardo S; Promentilla MA Materials (Basel); 2016 Jul; 9(7):. PubMed ID: 28773702 [TBL] [Abstract][Full Text] [Related]
7. Effect of Olive-Pine Bottom Ash on Properties of Geopolymers Based on Metakaolin. Bonet-Martínez E; García-Cobo P; Pérez-Villarejo L; Castro E; Eliche-Quesada D Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32085448 [TBL] [Abstract][Full Text] [Related]
8. Recycling of ash from biomass incinerator in clay matrix to produce ceramic bricks. Pérez-Villarejo L; Eliche-Quesada D; Iglesias-Godino FJ; Martínez-García C; Corpas-Iglesias FA J Environ Manage; 2012 Mar; 95 Suppl():S349-54. PubMed ID: 21071132 [TBL] [Abstract][Full Text] [Related]
9. Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash. Chen C; Li Q; Shen L; Zhai J Environ Technol; 2012 Jun; 33(10-12):1313-21. PubMed ID: 22856304 [TBL] [Abstract][Full Text] [Related]
10. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Chindaprasirt P; Jaturapitakkul C; Chalee W; Rattanasak U Waste Manag; 2009 Feb; 29(2):539-43. PubMed ID: 18715775 [TBL] [Abstract][Full Text] [Related]
11. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks. Eliche-Quesada D; Leite-Costa J Waste Manag; 2016 Feb; 48():323-333. PubMed ID: 26653359 [TBL] [Abstract][Full Text] [Related]
12. Stabilization/solidification of ashes in clays used in the manufacturing of ceramic bricks. García-Ubaque CA; Moreno-Piraján JC; Giraldo-Gutierrez L; Sapag K Waste Manag Res; 2007 Aug; 25(4):352-62. PubMed ID: 17874662 [TBL] [Abstract][Full Text] [Related]
13. Geopolymerisation of fly ashes with waste aluminium anodising etching solutions. Ogundiran MB; Nugteren HW; Witkamp GJ J Environ Manage; 2016 Oct; 181():118-123. PubMed ID: 27337520 [TBL] [Abstract][Full Text] [Related]
14. Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: A review. Silva RV; de Brito J; Lynn CJ; Dhir RK Waste Manag; 2017 Oct; 68():207-220. PubMed ID: 28669495 [TBL] [Abstract][Full Text] [Related]
15. Effect of Sintering Mechanism towards Crystallization of Geopolymer Ceramic-A Review. Mustapa NB; Ahmad R; Ibrahim WMW; Abdullah MMAB; Wattanasakulpong N; Nemeș O; Sandu AV; Vizureanu P; Sandu IG; Kartikowati CW; Risdanareni P Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297236 [TBL] [Abstract][Full Text] [Related]
16. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics. Zhang Z; Zhang L; Li A Waste Manag; 2015 Dec; 46():316-21. PubMed ID: 26387050 [TBL] [Abstract][Full Text] [Related]
17. Solidification/stabilization of ash from medical waste incineration into geopolymers. Tzanakos K; Mimilidou A; Anastasiadou K; Stratakis A; Gidarakos E Waste Manag; 2014 Oct; 34(10):1823-8. PubMed ID: 24785364 [TBL] [Abstract][Full Text] [Related]
18. Influence of Activators on Mechanical Properties of Modified Fly Ash Based Geopolymer Mortars. Prochon P; Zhao Z; Courard L; Piotrowski T; Michel F; Garbacz A Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32106414 [TBL] [Abstract][Full Text] [Related]
19. Geopolymers as a material suitable for immobilization of fly ash from municipal waste incineration plants. Łach M; Mierzwiński D; Korniejenko K; Mikuła J; Hebda M J Air Waste Manag Assoc; 2018 Nov; 68(11):1190-1197. PubMed ID: 29902119 [TBL] [Abstract][Full Text] [Related]
20. Retention of Pollutants Elements from Mine Tailings of Lead in Geopolymers for Construction. Terrones-Saeta JM; Suárez-Macías J; Castañón AM; Gómez-Fernández F; Corpas-Iglesias FA Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]