These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33406666)

  • 1. Influence of Specimen Thickness on the Acquisition of Al6061-T6 Material Properties Using SHPB and Verified by FEM.
    Kim YB; Kim J
    Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33406666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Dynamic Tensile Behaviour of Thermoplastic Composite Carbon/Polyamide 6.6 Using Split Hopkinson Pressure Bar.
    Mohsin MAA; Iannucci L; Greenhalgh ES
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33801731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Behavior of Aluminum Alloy Aw 5005 Undergoing Interfacial Friction and Specimen Configuration in Split Hopkinson Pressure Bar System at High Strain Rates and Temperatures.
    Bendarma A; Jankowiak T; Rusinek A; Lodygowski T; Jia B; Miguélez MH; Klosak M
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Coupled Experiment-finite Element Modeling Methodology for Assessing High Strain Rate Mechanical Response of Soft Biomaterials.
    Prabhu R; Whittington WR; Patnaik SS; Mao Y; Begonia MT; Williams LN; Liao J; Horstemeyer MF
    J Vis Exp; 2015 May; (99):e51545. PubMed ID: 26067742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical and Theoretical Analysis of the Inertia Effects and Interfacial Friction in SHPB Test Systems.
    Pei P; Pei Z; Tang Z
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33126561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Young's Modulus Calculus Using Split Hopkinson Bar Tests on Long and Thin Material Samples.
    Rotariu AN; Trană E; Matache L
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulse Design of Constant Strain Rate Loading in SHPB Based on Pulse Shaping Technique.
    Chen S; Chi R; Cao W; Pang B; Chao Z; Jiang L; Luo T; Zhang R
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Response of Rock-like Materials Based on SHPB Pulse Waveform Characteristics.
    Sun B; Chen R; Ping Y; Zhu Z; Wu N; He Y
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and Numerical Study of Fracture Behavior of Rock-Like Material Specimens with Single Pre-Set Joint under Dynamic Loading.
    Pan B; Wang X; Xu Z; Guo L; Wang X
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and Design of SHPB to Characterize Brittle Materials Under Compression for High Strain Rates.
    Jankowiak T; Rusinek A; Voyiadjis GZ
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32397607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental and numerical investigations on the use of polymer Hopkinson pressure bars.
    Harrigan JJ; Ahonsi B; Palamidi E; Reid SR
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2023):20130201. PubMed ID: 25071237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of tissue preservation temperature on high strain-rate material properties of brain.
    Zhang J; Yoganandan N; Pintar FA; Guan Y; Shender B; Paskoff G; Laud P
    J Biomech; 2011 Feb; 44(3):391-6. PubMed ID: 21055756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using the split Hopkinson pressure bar to validate material models.
    Church P; Cornish R; Cullis I; Gould P; Lewtas I
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2023):20130294. PubMed ID: 25071238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Verification and implementation of a modified split Hopkinson pressure bar technique for characterizing biological tissue and soft biosimulant materials under dynamic shear loading.
    Trexler MM; Lennon AM; Wickwire AC; Harrigan TP; Luong QT; Graham JL; Maisano AJ; Roberts JC; Merkle AC
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1920-8. PubMed ID: 22098890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semicircular bend testing with split Hopkinson pressure bar for measuring dynamic tensile strength of brittle solids.
    Dai F; Xia K; Luo SN
    Rev Sci Instrum; 2008 Dec; 79(12):123903. PubMed ID: 19123575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Compressive Mechanical Properties of UR50 Ultra-Early-Strength Cement-Based Concrete Material under High Strain Rate on SHPB Test.
    Wang W; Zhang Z; Huo Q; Song X; Yang J; Wang X; Wang J; Wang X
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on Dynamic Strength and Inertia Effect of Concrete Materials Based on Large-Diameter Split Hopkinson Pressure Bar Test.
    Sun B; Chen R; Ping Y; Zhu Z; Wu N; Shi Z
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Strain Rate on the Transverse Tension and Compression Behavior of a Unidirectional Non-Crimp Fabric Carbon Fiber/Snap-Cure Epoxy Composite.
    Rouf K; Suratkar A; Imbert-Boyd J; Wood J; Worswick M; Montesano J
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strength Characterization of Soils' Properties at High Strain Rates Using the Hopkinson Technique-A Review of Experimental Testing.
    Sobczyk K; Chmielewski R; Kruszka L; Rekucki R
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental technique of split Hopkinson pressure bar using fiber micro-displacement interferometer system for any reflector.
    Fu H; Tang XR; Li JL; Tan DW
    Rev Sci Instrum; 2014 Apr; 85(4):045120. PubMed ID: 24784672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.