These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 33406791)
1. Modeling and Analysis of a Three-Terminal-Memristor-Based Conservative Chaotic System. Wang Z; Qi G Entropy (Basel); 2021 Jan; 23(1):. PubMed ID: 33406791 [TBL] [Abstract][Full Text] [Related]
2. Breaking of integrability and conservation leading to Hamiltonian chaotic system and its energy-based coexistence analysis. Qi G; Gou T; Hu J; Chen G Chaos; 2021 Jan; 31(1):013101. PubMed ID: 33754774 [TBL] [Abstract][Full Text] [Related]
3. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor. Ma J; Zhou P; Ahmad B; Ren G; Wang C PLoS One; 2018; 13(1):e0191120. PubMed ID: 29342178 [TBL] [Abstract][Full Text] [Related]
4. Star Memristive Neural Network: Dynamics Analysis, Circuit Implementation, and Application in a Color Cryptosystem. Fu S; Yao Z; Qian C; Wang X Entropy (Basel); 2023 Aug; 25(9):. PubMed ID: 37761560 [TBL] [Abstract][Full Text] [Related]
5. A novel conservative system with hidden flows evolved from the simplest memristive circuit. Ji'e M; Yan D; Du X; Duan S; Wang L Chaos; 2022 Mar; 32(3):033111. PubMed ID: 35364844 [TBL] [Abstract][Full Text] [Related]
6. Stabilization of Port Hamiltonian Chaotic Systems with Hidden Attractors by Adaptive Terminal Sliding Mode Control. Azar AT; Serrano FE Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285897 [TBL] [Abstract][Full Text] [Related]
7. A memristive conservative chaotic circuit consisting of a memristor and a capacitor. Deng Y; Li Y Chaos; 2020 Jan; 30(1):013120. PubMed ID: 32013483 [TBL] [Abstract][Full Text] [Related]
8. Research on Variable Parameter Color Image Encryption Based on Five-Dimensional Tri-Valued Memristor Chaotic System. Wang P; Ding L Entropy (Basel); 2024 Jun; 26(7):. PubMed ID: 39056899 [TBL] [Abstract][Full Text] [Related]
9. Multistability in a physical memristor-based modified Chua's circuit. Guo M; Yang W; Xue Y; Gao Z; Yuan F; Dou G; Li Y Chaos; 2019 Apr; 29(4):043114. PubMed ID: 31042965 [TBL] [Abstract][Full Text] [Related]
10. A generic method for constructing n-fold covers of 3D conservative chaotic systems. Cang S; Li Y; Kang Z; Wang Z Chaos; 2020 Mar; 30(3):033103. PubMed ID: 32237766 [TBL] [Abstract][Full Text] [Related]
11. Discrete-Time Memristor Model for Enhancing Chaotic Complexity and Application in Secure Communication. Yan W; Dong W; Wang P; Wang Y; Xing Y; Ding Q Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885087 [TBL] [Abstract][Full Text] [Related]
12. A novel memristor-based dynamical system with multi-wing attractors and symmetric periodic bursting. Chang H; Li Y; Chen G Chaos; 2020 Apr; 30(4):043110. PubMed ID: 32357669 [TBL] [Abstract][Full Text] [Related]
13. Coexisting Attractors and Multistability in a Simple Memristive Wien-Bridge Chaotic Circuit. Song Y; Yuan F; Li Y Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267392 [TBL] [Abstract][Full Text] [Related]
14. Curry-Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems. Mugnaine M; Batista AM; Caldas IL; Szezech JD; de Carvalho RE; Viana RL Chaos; 2021 Feb; 31(2):023125. PubMed ID: 33653060 [TBL] [Abstract][Full Text] [Related]
15. Two-dimensional memristive hyperchaotic maps with different coupling frames and its hardware implementation. Wang M; An M; He S; Zhang X; Ho-Ching Iu H; Li Z Chaos; 2023 Jul; 33(7):. PubMed ID: 37459221 [TBL] [Abstract][Full Text] [Related]
16. Generating one to four-wing hidden attractors in a novel 4D no-equilibrium chaotic system with extreme multistability. Zhang S; Zeng Y; Li Z; Wang M; Xiong L Chaos; 2018 Jan; 28(1):013113. PubMed ID: 29390621 [TBL] [Abstract][Full Text] [Related]
17. RC Bridge Oscillation Memristor Chaotic Circuit for Electrical and Electronic Technology Extended Simulation Experiment. Dou G; Zhang Y; Yang H; Han M; Guo M; Gai W Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838110 [TBL] [Abstract][Full Text] [Related]
18. Locally active memristor based oscillators: The dynamic route from period to chaos and hyperchaos. Ying J; Liang Y; Wang G; Iu HH; Zhang J; Jin P Chaos; 2021 Jun; 31(6):063114. PubMed ID: 34241294 [TBL] [Abstract][Full Text] [Related]
19. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit. Kengne J; Njitacke Tabekoueng Z; Kamdoum Tamba V; Nguomkam Negou A Chaos; 2015 Oct; 25(10):103126. PubMed ID: 26520092 [TBL] [Abstract][Full Text] [Related]
20. A dual memristive Wien-bridge chaotic system with variable amplitude and frequency. Jiang Y; Yuan F; Li Y Chaos; 2020 Dec; 30(12):123117. PubMed ID: 33380067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]