These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 33406990)

  • 1. Continuous(ly) missing outcome data in network meta-analysis: A one-stage pattern-mixture model approach.
    Spineli LM; Kalyvas C; Papadimitropoulou K
    Stat Methods Med Res; 2021 Apr; 30(4):958-975. PubMed ID: 33406990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An empirical comparison of Bayesian modelling strategies for missing binary outcome data in network meta-analysis.
    Spineli LM
    BMC Med Res Methodol; 2019 Apr; 19(1):86. PubMed ID: 31018836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Participants' outcomes gone missing within a network of interventions: Bayesian modeling strategies.
    Spineli LM; Kalyvas C; Pateras K
    Stat Med; 2019 Sep; 38(20):3861-3879. PubMed ID: 31134664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How robust are findings of pairwise and network meta-analysis in the presence of missing participant outcome data?
    Spineli LM; Kalyvas C; Papadimitropoulou K
    BMC Med; 2021 Dec; 19(1):323. PubMed ID: 34930276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allowing for uncertainty due to missing data in meta-analysis--part 1: two-stage methods.
    White IR; Higgins JP; Wood AM
    Stat Med; 2008 Feb; 27(5):711-27. PubMed ID: 17703496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allowing for uncertainty due to missing continuous outcome data in pairwise and network meta-analysis.
    Mavridis D; White IR; Higgins JP; Cipriani A; Salanti G
    Stat Med; 2015 Feb; 34(5):721-41. PubMed ID: 25393541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of exclusion, imputation and modelling of missing binary outcome data in frequentist network meta-analysis.
    Spineli LM; Kalyvas C
    BMC Med Res Methodol; 2020 Feb; 20(1):48. PubMed ID: 32111167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian hierarchical models for network meta-analysis incorporating nonignorable missingness.
    Zhang J; Chu H; Hong H; Virnig BA; Carlin BP
    Stat Methods Med Res; 2017 Oct; 26(5):2227-2243. PubMed ID: 26220535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta-analysis.
    Turner NL; Dias S; Ades AE; Welton NJ
    Stat Med; 2015 May; 34(12):2062-80. PubMed ID: 25809313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern-mixture model in network meta-analysis of binary missing outcome data: one-stage or two-stage approach?
    Spineli LM; Papadimitropoulou K; Kalyvas C
    BMC Med Res Methodol; 2021 Jan; 21(1):12. PubMed ID: 33413138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allowing for informative missingness in aggregate data meta-analysis with continuous or binary outcomes: Extensions to metamiss.
    Chaimani A; Mavridis D; Higgins JPT; Salanti G; White IR
    Stata J; 2018 Jul; 18(3):716-740. PubMed ID: 30595674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian pattern-mixture models for dropout and intermittently missing data in longitudinal data analysis.
    Blozis SA
    Behav Res Methods; 2024 Mar; 56(3):1953-1967. PubMed ID: 37221346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential impact of missing outcome data on treatment effects in systematic reviews: imputation study.
    Kahale LA; Khamis AM; Diab B; Chang Y; Lopes LC; Agarwal A; Li L; Mustafa RA; Koujanian S; Waziry R; Busse JW; Dakik A; Schünemann HJ; Hooft L; Scholten RJ; Guyatt GH; Akl EA
    BMJ; 2020 Aug; 370():m2898. PubMed ID: 32847800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the impact of imputations for missing participant outcome data in a network meta-analysis.
    Spineli LM; Higgins JP; Cipriani A; Leucht S; Salanti G
    Clin Trials; 2013; 10(3):378-88. PubMed ID: 23321265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A systematic survey shows that reporting and handling of missing outcome data in networks of interventions is poor.
    Spineli LM; Yepes-Nuñez JJ; Schünemann HJ
    BMC Med Res Methodol; 2018 Oct; 18(1):115. PubMed ID: 30355280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dealing with missing outcome data in meta-analysis.
    Mavridis D; White IR
    Res Synth Methods; 2020 Jan; 11(1):2-13. PubMed ID: 30991455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outcome-sensitive multiple imputation: a simulation study.
    Kontopantelis E; White IR; Sperrin M; Buchan I
    BMC Med Res Methodol; 2017 Jan; 17(1):2. PubMed ID: 28068910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An application of the mixed-effects model and pattern mixture model to treatment groups with differential missingness suspected not-missing-at-random.
    Gosho M; Maruo K
    Pharm Stat; 2021 Jan; 20(1):93-108. PubMed ID: 33249763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Handling trial participants with missing outcome data when conducting a meta-analysis: a systematic survey of proposed approaches.
    Akl EA; Kahale LA; Agoritsas T; Brignardello-Petersen R; Busse JW; Carrasco-Labra A; Ebrahim S; Johnston BC; Neumann I; Sola I; Sun X; Vandvik P; Zhang Y; Alonso-Coello P; Guyatt G
    Syst Rev; 2015 Jul; 4():98. PubMed ID: 26202162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Missing continuous outcomes under covariate dependent missingness in cluster randomised trials.
    Hossain A; Diaz-Ordaz K; Bartlett JW
    Stat Methods Med Res; 2017 Jun; 26(3):1543-1562. PubMed ID: 27177885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.