BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

631 related articles for article (PubMed ID: 33407069)

  • 1. PCirc: random forest-based plant circRNA identification software.
    Yin S; Tian X; Zhang J; Sun P; Li G
    BMC Bioinformatics; 2021 Jan; 22(1):10. PubMed ID: 33407069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.
    Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Prediction of Human Disease- Associated circRNAs Based on Manifold Regularization Learning Framework.
    Xiao Q; Luo J; Dai J
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2661-2669. PubMed ID: 30629521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Widespread noncoding circular RNAs in plants.
    Ye CY; Chen L; Liu C; Zhu QH; Fan L
    New Phytol; 2015 Oct; 208(1):88-95. PubMed ID: 26204923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A machine learning framework for accurately recognizing circular RNAs for clinical decision-supporting.
    Wang Y; Zhang X; Wang T; Xing J; Wu Z; Li W; Wang J
    BMC Med Inform Decis Mak; 2020 Jul; 20(Suppl 3):137. PubMed ID: 32646420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying Circular RNA and Predicting Its Regulatory Interactions by Machine Learning.
    Zhang G; Deng Y; Liu Q; Ye B; Dai Z; Chen Y; Dai X
    Front Genet; 2020; 11():655. PubMed ID: 32849764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GBDTCDA: Predicting circRNA-disease Associations Based on Gradient Boosting Decision Tree with Multiple Biological Data Fusion.
    Lei X; Fang Z
    Int J Biol Sci; 2019; 15(13):2911-2924. PubMed ID: 31853227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. circMeta: a unified computational framework for genomic feature annotation and differential expression analysis of circular RNAs.
    Chen L; Wang F; Bruggeman EC; Li C; Yao B
    Bioinformatics; 2020 Jan; 36(2):539-545. PubMed ID: 31373611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collaborative deep learning improves disease-related circRNA prediction based on multi-source functional information.
    Wang Y; Liu X; Shen Y; Song X; Wang T; Shang X; Peng J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogenesis mechanisms of circular RNA can be categorized through feature extraction of a machine learning model.
    Liu C; Liu YC; Huang HD; Wang W
    Bioinformatics; 2019 Dec; 35(23):4867-4870. PubMed ID: 31529043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing viral circRNAs and their application in identifying circRNAs in viruses.
    Niu M; Ju Y; Lin C; Zou Q
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34585234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular RNAs and complex diseases: from experimental results to computational models.
    Wang CC; Han CD; Zhao Q; Chen X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34329377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring Potential CircRNA-Disease Associations via Deep Autoencoder-Based Classification.
    Deepthi K; Jereesh AS
    Mol Diagn Ther; 2021 Jan; 25(1):87-97. PubMed ID: 33156515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification, characterization, and functional prediction of circular RNAs in maize.
    Han Y; Li X; Yan Y; Duan MH; Xu JH
    Mol Genet Genomics; 2020 Mar; 295(2):491-503. PubMed ID: 31894398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iCDA-CMG: identifying circRNA-disease associations by federating multi-similarity fusion and collective matrix completion.
    Xiao Q; Zhong J; Tang X; Luo J
    Mol Genet Genomics; 2021 Jan; 296(1):223-233. PubMed ID: 33159254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CircMiMi: a stand-alone software for constructing circular RNA-microRNA-mRNA interactions across species.
    Chiang TW; Mai TL; Chuang TJ
    BMC Bioinformatics; 2022 May; 23(1):164. PubMed ID: 35524165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRIP: predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks.
    Zhang K; Pan X; Yang Y; Shen HB
    RNA; 2019 Dec; 25(12):1604-1615. PubMed ID: 31537716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm.
    Wang L; You ZH; Li YM; Zheng K; Huang YA
    PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PlantcircBase 7.0: Full-length transcripts and conservation of plant circRNAs.
    Xu X; Du T; Mao W; Li X; Ye CY; Zhu QH; Fan L; Chu Q
    Plant Commun; 2022 Jul; 3(4):100343. PubMed ID: 35637632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microarray is an efficient tool for circRNA profiling.
    Li S; Teng S; Xu J; Su G; Zhang Y; Zhao J; Zhang S; Wang H; Qin W; Lu ZJ; Guo Y; Zhu Q; Wang D
    Brief Bioinform; 2019 Jul; 20(4):1420-1433. PubMed ID: 29415187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.