These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 33407085)
1. Drug-induced cell viability prediction from LINCS-L1000 through WRFEN-XGBoost algorithm. Lu J; Chen M; Qin Y BMC Bioinformatics; 2021 Jan; 22(1):13. PubMed ID: 33407085 [TBL] [Abstract][Full Text] [Related]
2. [Prediction of drug-induced cell viability by SAE-XGBoost algorithm based on LINCS-L1000 perturbation signal]. Lu J; Chen M; Qin Y; Yu X Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1346-1359. PubMed ID: 33973447 [TBL] [Abstract][Full Text] [Related]
3. Compound signature detection on LINCS L1000 big data. Liu C; Su J; Yang F; Wei K; Ma J; Zhou X Mol Biosyst; 2015 Mar; 11(3):714-22. PubMed ID: 25609570 [TBL] [Abstract][Full Text] [Related]
4. Signatures of cell death and proliferation in perturbation transcriptomics data-from confounding factor to effective prediction. Szalai B; Subramanian V; Holland CH; Alföldi R; Puskás LG; Saez-Rodriguez J Nucleic Acids Res; 2019 Nov; 47(19):10010-10026. PubMed ID: 31552418 [TBL] [Abstract][Full Text] [Related]
7. Transfer learning of condition-specific perturbation in gene interactions improves drug response prediction. Bang D; Koo B; Kim S Bioinformatics; 2024 Jun; 40(Suppl 1):i130-i139. PubMed ID: 38940127 [TBL] [Abstract][Full Text] [Related]
8. A Bayesian approach to accurate and robust signature detection on LINCS L1000 data. Qiu Y; Lu T; Lim H; Xie L Bioinformatics; 2020 May; 36(9):2787-2795. PubMed ID: 32003771 [TBL] [Abstract][Full Text] [Related]
9. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Duan Q; Flynn C; Niepel M; Hafner M; Muhlich JL; Fernandez NF; Rouillard AD; Tan CM; Chen EY; Golub TR; Sorger PK; Subramanian A; Ma'ayan A Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W449-60. PubMed ID: 24906883 [TBL] [Abstract][Full Text] [Related]
10. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization. Wang L; Li X; Zhang L; Gao Q BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489 [TBL] [Abstract][Full Text] [Related]
11. Prediction of anti-cancer drug response by kernelized multi-task learning. Tan M Artif Intell Med; 2016 Oct; 73():70-77. PubMed ID: 27926382 [TBL] [Abstract][Full Text] [Related]
12. Drug Signature Detection Based on L1000 Genomic and Proteomic Big Data. Chen W; Zhou X Methods Mol Biol; 2019; 1939():273-286. PubMed ID: 30848467 [TBL] [Abstract][Full Text] [Related]
13. Multi-target drug repositioning by bipartite block-wise sparse multi-task learning. Li L; He X; Borgwardt K BMC Syst Biol; 2018 Apr; 12(Suppl 4):55. PubMed ID: 29745839 [TBL] [Abstract][Full Text] [Related]
14. l1kdeconv: an R package for peak calling analysis with LINCS L1000 data. Li Z; Li J; Yu P BMC Bioinformatics; 2017 Jul; 18(1):356. PubMed ID: 28750623 [TBL] [Abstract][Full Text] [Related]
15. Predicting Anticancer Drug Responses Using a Dual-Layer Integrated Cell Line-Drug Network Model. Zhang N; Wang H; Fang Y; Wang J; Zheng X; Liu XS PLoS Comput Biol; 2015; 11(9):e1004498. PubMed ID: 26418249 [TBL] [Abstract][Full Text] [Related]
16. An Integrated Approach to Anti-Cancer Drug Sensitivity Prediction. Berlow N; Haider S; Wan Q; Geltzeiler M; Davis LE; Keller C; Pal R IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(6):995-1008. PubMed ID: 26357038 [TBL] [Abstract][Full Text] [Related]
17. Computational Analyses Connect Small-Molecule Sensitivity to Cellular Features Using Large Panels of Cancer Cell Lines. Rees MG; Seashore-Ludlow B; Clemons PA Methods Mol Biol; 2019; 1888():233-254. PubMed ID: 30519951 [TBL] [Abstract][Full Text] [Related]
18. Drug Effect Prediction by Integrating L1000 Genomic and Proteomic Big Data. Chen W; Zhou X Methods Mol Biol; 2019; 1939():287-297. PubMed ID: 30848468 [TBL] [Abstract][Full Text] [Related]
19. LINCS L1000 dataset-based repositioning of CGP-60474 as a highly potent anti-endotoxemic agent. Han HW; Hahn S; Jeong HY; Jee JH; Nam MO; Kim HK; Lee DH; Lee SY; Choi DK; Yu JH; Min SH; Yoo J Sci Rep; 2018 Oct; 8(1):14969. PubMed ID: 30297806 [TBL] [Abstract][Full Text] [Related]
20. Deep learning-based transcriptome data classification for drug-target interaction prediction. Xie L; He S; Song X; Bo X; Zhang Z BMC Genomics; 2018 Sep; 19(Suppl 7):667. PubMed ID: 30255785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]