These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33407085)

  • 21. Prediction of Type 2 Diabetes Risk and Its Effect Evaluation Based on the XGBoost Model.
    Wang L; Wang X; Chen A; Jin X; Che H
    Healthcare (Basel); 2020 Jul; 8(3):. PubMed ID: 32751894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Data Portal for the Library of Integrated Network-based Cellular Signatures (LINCS) program: integrated access to diverse large-scale cellular perturbation response data.
    Koleti A; Terryn R; Stathias V; Chung C; Cooper DJ; Turner JP; Vidovic D; Forlin M; Kelley TT; D'Urso A; Allen BK; Torre D; Jagodnik KM; Wang L; Jenkins SL; Mader C; Niu W; Fazel M; Mahi N; Pilarczyk M; Clark N; Shamsaei B; Meller J; Vasiliauskas J; Reichard J; Medvedovic M; Ma'ayan A; Pillai A; Schürer SC
    Nucleic Acids Res; 2018 Jan; 46(D1):D558-D566. PubMed ID: 29140462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting chemosensitivity using drug perturbed gene dynamics.
    Mannheimer JD; Prasad A; Gustafson DL
    BMC Bioinformatics; 2021 Jan; 22(1):15. PubMed ID: 33413081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A transfer learning approach via procrustes analysis and mean shift for cancer drug sensitivity prediction.
    Turki T; Wei Z; Wang JTL
    J Bioinform Comput Biol; 2018 Jun; 16(3):1840014. PubMed ID: 29945499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response.
    Su R; Liu X; Wei L; Zou Q
    Methods; 2019 Aug; 166():91-102. PubMed ID: 30772464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predict drug sensitivity of cancer cells with pathway activity inference.
    Wang X; Sun Z; Zimmermann MT; Bugrim A; Kocher JP
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):15. PubMed ID: 30704449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SWnet: a deep learning model for drug response prediction from cancer genomic signatures and compound chemical structures.
    Zuo Z; Wang P; Chen X; Tian L; Ge H; Qian D
    BMC Bioinformatics; 2021 Sep; 22(1):434. PubMed ID: 34507532
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drug-induced adverse events prediction with the LINCS L1000 data.
    Wang Z; Clark NR; Ma'ayan A
    Bioinformatics; 2016 Aug; 32(15):2338-45. PubMed ID: 27153606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. L1000CDS
    Duan Q; Reid SP; Clark NR; Wang Z; Fernandez NF; Rouillard AD; Readhead B; Tritsch SR; Hodos R; Hafner M; Niepel M; Sorger PK; Dudley JT; Bavari S; Panchal RG; Ma'ayan A
    NPJ Syst Biol Appl; 2016; 2():16015-. PubMed ID: 28413689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Getting Started with LINCS Datasets and Tools.
    Xie Z; Kropiwnicki E; Wojciechowicz ML; Jagodnik KM; Shu I; Bailey A; Clarke DJB; Jeon M; Evangelista JE; V Kuleshov M; Lachmann A; Parigi AA; Sanchez JM; Jenkins SL; Ma'ayan A
    Curr Protoc; 2022 Jul; 2(7):e487. PubMed ID: 35876555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting Breast Cancer in Chinese Women Using Machine Learning Techniques: Algorithm Development.
    Hou C; Zhong X; He P; Xu B; Diao S; Yi F; Zheng H; Li J
    JMIR Med Inform; 2020 Jun; 8(6):e17364. PubMed ID: 32510459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. EXP2SL: A Machine Learning Framework for Cell-Line-Specific Synthetic Lethality Prediction.
    Wan F; Li S; Tian T; Lei Y; Zhao D; Zeng J
    Front Pharmacol; 2020; 11():112. PubMed ID: 32184722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations.
    Keenan AB; Jenkins SL; Jagodnik KM; Koplev S; He E; Torre D; Wang Z; Dohlman AB; Silverstein MC; Lachmann A; Kuleshov MV; Ma'ayan A; Stathias V; Terryn R; Cooper D; Forlin M; Koleti A; Vidovic D; Chung C; Schürer SC; Vasiliauskas J; Pilarczyk M; Shamsaei B; Fazel M; Ren Y; Niu W; Clark NA; White S; Mahi N; Zhang L; Kouril M; Reichard JF; Sivaganesan S; Medvedovic M; Meller J; Koch RJ; Birtwistle MR; Iyengar R; Sobie EA; Azeloglu EU; Kaye J; Osterloh J; Haston K; Kalra J; Finkbiener S; Li J; Milani P; Adam M; Escalante-Chong R; Sachs K; Lenail A; Ramamoorthy D; Fraenkel E; Daigle G; Hussain U; Coye A; Rothstein J; Sareen D; Ornelas L; Banuelos M; Mandefro B; Ho R; Svendsen CN; Lim RG; Stocksdale J; Casale MS; Thompson TG; Wu J; Thompson LM; Dardov V; Venkatraman V; Matlock A; Van Eyk JE; Jaffe JD; Papanastasiou M; Subramanian A; Golub TR; Erickson SD; Fallahi-Sichani M; Hafner M; Gray NS; Lin JR; Mills CE; Muhlich JL; Niepel M; Shamu CE; Williams EH; Wrobel D; Sorger PK; Heiser LM; Gray JW; Korkola JE; Mills GB; LaBarge M; Feiler HS; Dane MA; Bucher E; Nederlof M; Sudar D; Gross S; Kilburn DF; Smith R; Devlin K; Margolis R; Derr L; Lee A; Pillai A
    Cell Syst; 2018 Jan; 6(1):13-24. PubMed ID: 29199020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PREDICT: a method for inferring novel drug indications with application to personalized medicine.
    Gottlieb A; Stein GY; Ruppin E; Sharan R
    Mol Syst Biol; 2011 Jun; 7():496. PubMed ID: 21654673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical intelligence: New machine learning techniques for predicting clinical drug response.
    Turki T; Wang JTL
    Comput Biol Med; 2019 Apr; 107():302-322. PubMed ID: 30771879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting.
    Yu B; Qiu W; Chen C; Ma A; Jiang J; Zhou H; Ma Q
    Bioinformatics; 2020 Feb; 36(4):1074-1081. PubMed ID: 31603468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Iterative sure independent ranking and screening for drug response prediction.
    An B; Zhang Q; Fang Y; Chen M; Qin Y
    BMC Med Inform Decis Mak; 2020 Sep; 20(Suppl 8):224. PubMed ID: 32962705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current Trends in Drug Sensitivity Prediction.
    Cortes-Ciriano I; Mervin LH; Bender A
    Curr Pharm Des; 2016; 22(46):6918-6927. PubMed ID: 27784247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine Learning for Pharmacogenomics and Personalized Medicine: A Ranking Model for Drug Sensitivity Prediction.
    Sotudian S; Paschalidis IC
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2324-2333. PubMed ID: 34043512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Library of Phosphoproteomic and Chromatin Signatures for Characterizing Cellular Responses to Drug Perturbations.
    Litichevskiy L; Peckner R; Abelin JG; Asiedu JK; Creech AL; Davis JF; Davison D; Dunning CM; Egertson JD; Egri S; Gould J; Ko T; Johnson SA; Lahr DL; Lam D; Liu Z; Lyons NJ; Lu X; MacLean BX; Mungenast AE; Officer A; Natoli TE; Papanastasiou M; Patel J; Sharma V; Toder C; Tubelli AA; Young JZ; Carr SA; Golub TR; Subramanian A; MacCoss MJ; Tsai LH; Jaffe JD
    Cell Syst; 2018 Apr; 6(4):424-443.e7. PubMed ID: 29655704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.