These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 33407678)

  • 21. Impact assessment of leaf pigments in selected landscape plants exposed to roadside dust.
    Shah K; Amin NU; Ahmad I; Ara G
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):23055-23073. PubMed ID: 29860685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ identification and analysis of automotive paint pigments using line segment excitation Raman spectroscopy: I. Inorganic topcoat pigments.
    Suzuki EM; Carrabba M
    J Forensic Sci; 2001 Sep; 46(5):1053-69. PubMed ID: 11569543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intelligent spectral algorithm for pigments visualization, classification and identification based on Raman spectra.
    Hu J; Zhang D; Zhao H; Sun B; Liang P; Ye J; Yu Z; Jin S
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 250():119390. PubMed ID: 33422866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research Review on Quality Detection of Fresh Tea Leaves Based on Spectral Technology.
    Tang T; Luo Q; Yang L; Gao C; Ling C; Wu W
    Foods; 2023 Dec; 13(1):. PubMed ID: 38201054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid prediction of chlorophylls and carotenoids content in tea leaves under different levels of nitrogen application based on hyperspectral imaging.
    Wang Y; Hu X; Jin G; Hou Z; Ning J; Zhang Z
    J Sci Food Agric; 2019 Mar; 99(4):1997-2004. PubMed ID: 30298617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-way based calibration transfer between two Raman spectrometers.
    Kompany-Zareh M; van den Berg F
    Analyst; 2010 Jun; 135(6):1382-8. PubMed ID: 20405058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Responses of leaf gas exchange attributes, photosynthetic pigments and antioxidant enzymes in NaCl-stressed cotton (Gossypium hirsutum L.) seedlings to exogenous glycine betaine and salicylic acid.
    Hamani AKM; Wang G; Soothar MK; Shen X; Gao Y; Qiu R; Mehmood F
    BMC Plant Biol; 2020 Sep; 20(1):434. PubMed ID: 32957907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raman spectral classification algorithm of cephalosporin based on VGGNeXt.
    Yang S; Xie Y; Liu J; Zhao S; Jin S; Zhang D; Chen Q; Huang J; Liang P
    Analyst; 2022 Nov; 147(23):5486-5494. PubMed ID: 36321989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nondestructive detection of rape leaf chlorophyll level based on Vis-NIR spectroscopy.
    Liu J; Han J; Chen X; Shi L; Zhang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117202. PubMed ID: 31181506
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous determination of six main types of lipid-soluble pigments in green tea by visible and near-infrared spectroscopy.
    Li X; Jin J; Sun C; Ye D; Liu Y
    Food Chem; 2019 Jan; 270():236-242. PubMed ID: 30174040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-destructive prediction of pigment content in lettuce based on visible-NIR spectroscopy.
    Steidle Neto AJ; Moura LO; Lopes DC; Carlos LA; Martins LM; Ferraz LC
    J Sci Food Agric; 2017 May; 97(7):2015-2022. PubMed ID: 27553517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using leaf spectroscopy and pigment estimation to monitor indoor grown lettuce dynamic response to spectral light intensity.
    Cammarisano L; Graefe J; Körner O
    Front Plant Sci; 2022; 13():1044976. PubMed ID: 36479514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Portable Raman leaf-clip sensor for rapid detection of plant stress.
    Gupta S; Huang CH; Singh GP; Park BS; Chua NH; Ram RJ
    Sci Rep; 2020 Nov; 10(1):20206. PubMed ID: 33214575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Research on Rapid and Low-Cost Spectral Device for the Estimation of the Quality Attributes of Tea Tree Leaves.
    Wang J; Li X; Wang W; Wang F; Liu Q; Yan L
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of complex photosynthetic pigment profiles in European deciduous tree leaves by sequential extraction and reversed-phase high-performance liquid chromatography.
    Petibon F; Wiesenberg GLB
    Front Plant Sci; 2022; 13():957606. PubMed ID: 36311078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acquisition of High Spectral Resolution Diffuse Reflectance Image Cubes (350-2500 nm) from Archaeological Wall Paintings and Other Immovable Heritage Using a Field-Deployable Spatial Scanning Reflectance Spectrometry Hyperspectral System.
    Radpour R; Delaney JK; Kakoulli I
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of pigments of halophilic endoliths from gypsum: Raman portable instrument and European Space Agency's prototype analysis.
    Culka A; Osterrothová K; Hutchinson I; Ingley R; McHugh M; Oren A; Edwards HG; Jehlička J
    Philos Trans A Math Phys Eng Sci; 2014 Dec; 372(2030):. PubMed ID: 25368354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calibration transfer of a Raman spectroscopic quantification method for the assessment of liquid detergent compositions from at-line laboratory to in-line industrial scale.
    Brouckaert D; Uyttersprot JS; Broeckx W; De Beer T
    Talanta; 2018 Mar; 179():386-392. PubMed ID: 29310249
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Calibration Procedure of Laser Confocal Micro-Raman Spectrometer].
    Zhao YC; Ren LL; Wei WS; Yao YX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2544-7. PubMed ID: 26669164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell-phone camera Raman spectrometer.
    Dhankhar D; Nagpal A; Rentzepis PM
    Rev Sci Instrum; 2021 May; 92(5):054101. PubMed ID: 34243331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.