These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 334081)

  • 1. Regulation of energy metabolism in Saccharomyces cerevisiae. Relationships between catabolite repression, trehalose synthesis, and mitochondrial development.
    Panek AD; Mattoon JR
    Arch Biochem Biophys; 1977 Sep; 183(1):306-16. PubMed ID: 334081
    [No Abstract]   [Full Text] [Related]  

  • 2. Genetic and metabolic control of trehalose and glycogen synthesis. New relationships between energy reserves, catabolite repression and maltose utilization.
    Panek AD; Sampaio AL; Braz GC; Baker SJ; Mattoon JR
    Cell Mol Biol Incl Cyto Enzymol; 1979; 25(5):345-54. PubMed ID: 394841
    [No Abstract]   [Full Text] [Related]  

  • 3. Catabolite inactivation of trehalose synthesis during growth of yeast on maltose.
    Paschoalin VM; Panek AC; Panek AD
    Braz J Med Biol Res; 1987; 20(6):675-83. PubMed ID: 2843252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of trehalose in Saccharomyces cerevisiae growing on maltose is dependent on the TPS1 gene encoding the UDPglucose-linked trehalose synthase.
    Petit T; François J
    FEBS Lett; 1994 Dec; 355(3):309-13. PubMed ID: 7988695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further evidence for the alternative pathway of trehalose synthesis linked to maltose utilization in Saccharomyces.
    Paschoalin VM; Costa-Carvalho VL; Panek AD
    Curr Genet; 1986; 10(10):725-31. PubMed ID: 3447733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetic irrelevance of aerobiosis for S. cerevisiae growing on sugars.
    Lagunas R
    Mol Cell Biochem; 1979 Nov; 27(3):139-46. PubMed ID: 390364
    [No Abstract]   [Full Text] [Related]  

  • 7. Regulation of the synthesis of mitochondrial enzymes and cytochromes. Distinction between catabolite repression and anaerobiosis in Saccharomyces cerevisiae.
    Lowdon MJ; Gordon PA; Stewart PR
    Arch Mikrobiol; 1972; 85(4):355-61. PubMed ID: 4347454
    [No Abstract]   [Full Text] [Related]  

  • 8. Suppressors of nuclear respiratory deficient mutant pet 24 of yeast.
    Kotylak Z; Ulaszewski S; Misiewicz M; Czerwińska K
    Acta Microbiol Pol A; 1973; 5(1):31-6. PubMed ID: 4579377
    [No Abstract]   [Full Text] [Related]  

  • 9. A nuclear mutant of S. cerevisiae non-tolerating the cytoplasmic petite mutation.
    Subĭk J
    FEBS Lett; 1974 Jun; 42(3):309-13. PubMed ID: 4604022
    [No Abstract]   [Full Text] [Related]  

  • 10. Mutations releasing mitochondrial biogenesis from glucose repression in Saccharomyces cerevisiae.
    Böker-Schmitt E; Francisci S; Schweyen RJ
    J Bacteriol; 1982 Jul; 151(1):303-10. PubMed ID: 7045078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The trehalose pathway regulates mitochondrial respiratory chain content through hexokinase 2 and cAMP in Saccharomyces cerevisiae.
    Noubhani A; Bunoust O; Bonini BM; Thevelein JM; Devin A; Rigoulet M
    J Biol Chem; 2009 Oct; 284(40):27229-34. PubMed ID: 19620241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An evaluation of D-glucosamine as a gratuitous catabolite repressor of Saccharomyces carlsbergensis.
    Furst A; Michels CA
    Mol Gen Genet; 1977 Oct; 155(3):309-14. PubMed ID: 202860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial factors in the utilization of sugars in Saccharomyces cerevisiae.
    Evans IH; Wilkie D
    Genet Res; 1976 Feb; 27(1):89-93. PubMed ID: 776743
    [No Abstract]   [Full Text] [Related]  

  • 14. Detection of modifications in the glucose metabolism induced by genetic mutations in Saccharomyces cerevisiae by 13C- and H-NMR spectroscopy.
    Herve M; Buffin-Meyer B; Bouet F; Son TD
    Eur J Biochem; 2000 Jun; 267(11):3337-44. PubMed ID: 10824121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of a catabolite repression mutant of yeast as a revertant of a strain that is maltose negative in the respiratory-deficient state.
    Schamhart DH; Ten Berge AM; Van De Poll KW
    J Bacteriol; 1975 Mar; 121(3):747-52. PubMed ID: 163813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Synthesis of protoheme by the yeast Saccharomyces cerevisiae. II. Effects of glucose on respiratory adaptation].
    Labbe P; Dechateaubodeau G; Labbe-Bois R
    Biochimie; 1972; 54(4):513-28. PubMed ID: 4345865
    [No Abstract]   [Full Text] [Related]  

  • 17. Parallel changes in catabolite repression of haem biosynthesis and cytochromes in repression-resistant mutants of Saccharomyces cerevisiae.
    Borralho LM; Malamud DR; Panek AD; Tenan MN; Oliveira DE; Mattoon JR
    J Gen Microbiol; 1989 May; 135(5):1217-27. PubMed ID: 2695599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fermentability of maltose by baker's yeast containing trehalose.
    SUOMALAINEN H; OURA E
    Biochim Biophys Acta; 1956 Jun; 20(3):538-42. PubMed ID: 13341946
    [No Abstract]   [Full Text] [Related]  

  • 19. The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae.
    Gamo FJ; Lafuente MJ; Gancedo C
    J Bacteriol; 1994 Dec; 176(24):7423-9. PubMed ID: 8002563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of mitochondria in carbon catabolite repression in yeast.
    Haussmann P; Zimmermann FK
    Mol Gen Genet; 1976 Oct; 148(2):205-11. PubMed ID: 790158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.