BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 3340813)

  • 1. Oxygen binding characteristics of the hemocyanins of two deep-sea hydrothermal vent crustaceans.
    Sanders NK; Arp AJ; Childress JJ
    Respir Physiol; 1988 Jan; 71(1):57-67. PubMed ID: 3340813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional properties of hemocyanin from Cyanagraea praedator, a deep-sea hydrothermal vent crab.
    Chausson F; Bridges CR; Sarradin PM; Green BN; Riso R; Caprais JC; Lallier FH
    Proteins; 2001 Dec; 45(4):351-9. PubMed ID: 11746683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional differences in the multiple hemocyanins of the horseshoe crab, Limulus polyphemus L.
    Sullivan B; Bonaventura J; Bonaventura C
    Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2558-62. PubMed ID: 4210212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of oxygenation-linked proton and lactate binding govern the temperature sensitivity of O2 binding in crustacean (Carcinus maenas) hemocyanin.
    Weber RE; Behrens JW; Malte H; Fago A
    J Exp Biol; 2008 Apr; 211(Pt 7):1057-62. PubMed ID: 18344479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional characteristics of the blood of the deep-sea hydrothermal vent brachyuran crab.
    Arp AJ; Childress JJ
    Science; 1981 Oct; 214(4520):559-61. PubMed ID: 17838404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic measurement of the oxygen affinity of Cancer magister hemocyanin.
    Wajcman H; McMahill P; Mason HS
    Comp Biochem Physiol B; 1977; 57(2):139-41. PubMed ID: 45545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory adaptations to the deep-sea hydrothermal vent environment: the case of Segonzacia mesatlantica, a crab from the Mid-Atlantic Ridge.
    Chausson F; Sanglier S; Leize E; Hagège A; Bridges CR; Sarradin PM; Shillito B; Lallier FH; Zal F
    Micron; 2004; 35(1-2):31-41. PubMed ID: 15036285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of temperature acclimation on crayfish hemocyanin oxygen binding.
    Rutledge PS
    Am J Physiol; 1981 Jan; 240(1):R93-8. PubMed ID: 7457633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptations to the Deep-Sea Oxygen Minimum Layer: Oxygen Binding by the Hemocyanin of the Bathypelagic Mysid, Gnathophausia ingens Dohrn.
    Sanders NK; Childress JJ
    Biol Bull; 1990 Jun; 178(3):286-294. PubMed ID: 29314949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular heterogeneity of the hemocyanin isolated from the king crab Paralithodes camtschaticae.
    Molon A; Di Muro P; Bubacco L; Vasilyev V; Salvato B; Beltramini M; Conze W; Hellmann N; Decker H
    Eur J Biochem; 2000 Dec; 267(24):7046-57. PubMed ID: 11106415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors controlling the in vitro and in vivo oxygen affinity of the hemocyanin in the crab Carcinus maenas (L.).
    Truchot JP
    Respir Physiol; 1975 Jul; 24(2):173-89. PubMed ID: 241104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric modulation of Callinectes sapidus hemocyanin by binding of L-lactate.
    Johnson BA; Bonaventura C; Bonaventura J
    Biochemistry; 1984 Feb; 23(5):872-8. PubMed ID: 25856833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen equilibria of Octopus dofleini hemocyanin.
    Miller KI
    Biochemistry; 1985 Aug; 24(17):4582-6. PubMed ID: 4063340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature adaptation influences the aggregation state of hemocyanin from Astacus leptodactylus.
    Decker H; Föll R
    Comp Biochem Physiol A Mol Integr Physiol; 2000 Oct; 127(2):147-54. PubMed ID: 11064282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hemocyanin of the shamefaced crab Calappa granulata: structural-functional characterization.
    Olianas A; Sanna MT; Messana I; Castagnola M; Masia D; Manconi B; Cau A; Giardina B; Pellegrini M
    J Biochem; 2006 Jun; 139(6):957-66. PubMed ID: 16788046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of haemocyanin oxygen affinity in the intertidal prawn Palaemon elegans (Rathke).
    Bridges CR; Morris S; Grieshaber MK
    Respir Physiol; 1984 Aug; 57(2):189-200. PubMed ID: 6494645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemolymph oxygen transport during environmental hypoxia in the shore crab, Carcinus maenas.
    Lallier F; Truchot JP
    Respir Physiol; 1989 Sep; 77(3):323-36. PubMed ID: 2781169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulators of haemocyanin oxygen affinity in the hypoxia- and sulphide-tolerant Baltic isopod Saduria entomon (L.).
    Hagerman L; Vismann B
    J Comp Physiol B; 2001 Nov; 171(8):695-9. PubMed ID: 11765978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An investigation of the nature of Bohr, Root, and Haldane effects in Octopus dofleini hemocyanin.
    Miller KI; Mangum CP
    J Comp Physiol B; 1988; 158(5):547-52. PubMed ID: 3150406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ontogeny of decapod crustacean hemocyanin: effects of temperature and nutrition.
    Terwilliger N; Dumler K
    J Exp Biol; 2001 Mar; 204(Pt 5):1013-20. PubMed ID: 11171424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.