These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33408559)

  • 1. Plasmonic modes in cylindrical nanoparticles and dimers.
    Downing CA; Weick G
    Proc Math Phys Eng Sci; 2020 Dec; 476(2244):20200530. PubMed ID: 33408559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retardation effects on the dispersion and propagation of plasmons in metallic nanoparticle chains.
    Downing CA; Mariani E; Weick G
    J Phys Condens Matter; 2018 Jan; 30(2):025301. PubMed ID: 29176053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From localized to delocalized plasmonic modes, first observation of superradiant scattering in disordered semi-continuous metal films.
    Berthelot A; des Francs GC; Varguet H; Margueritat J; Mascart R; Benoit JM; Laverdant J
    Nanotechnology; 2019 Jan; 30(1):015706. PubMed ID: 30370901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dirac-like plasmons in honeycomb lattices of metallic nanoparticles.
    Weick G; Woollacott C; Barnes WL; Hess O; Mariani E
    Phys Rev Lett; 2013 Mar; 110(10):106801. PubMed ID: 23521276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective multipole oscillations direct the plasmonic coupling at the nanojunction interfaces.
    Hooshmand N; El-Sayed MA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19299-19304. PubMed ID: 31488713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer.
    Sheikholeslami S; Jun YW; Jain PK; Alivisatos AP
    Nano Lett; 2010 Jul; 10(7):2655-60. PubMed ID: 20536212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoengineering of conductively coupled metallic nanoparticles towards selective resonance modes within the near-infrared regime.
    Hadilou N; Souri S; Navid HA; Sadighi Bonabi R; Anvari A
    Sci Rep; 2022 May; 12(1):7829. PubMed ID: 35550525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized surface plasmons in vibrating graphene nanodisks.
    Wang W; Li BH; Stassen E; Mortensen NA; Christensen J
    Nanoscale; 2016 Feb; 8(6):3809-15. PubMed ID: 26815600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Metal Nanoparticles-Graphene Nanodisks-Quantum Dots Hybrid-System-Based Spaser.
    Tohari MM; Lyras A; S AlSalhi M
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32120985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lasing in dark and bright modes of a finite-sized plasmonic lattice.
    Hakala TK; Rekola HT; Väkeväinen AI; Martikainen JP; Nečada M; Moilanen AJ; Törmä P
    Nat Commun; 2017 Jan; 8():13687. PubMed ID: 28045047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Substrate-Mediated Plasmon Hybridization in a Nanoparticle Dimer for Photoluminescence Line-Width Shrinking and Intensity Enhancement.
    Li GC; Zhang YL; Jiang J; Luo Y; Lei DY
    ACS Nano; 2017 Mar; 11(3):3067-3080. PubMed ID: 28291332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fano Transparency in Rounded Nanocube Dimers Induced by Gap Plasmon Coupling.
    Pellarin M; Ramade J; Rye JM; Bonnet C; Broyer M; Lebeault MA; Lermé J; Marguet S; Navarro JR; Cottancin E
    ACS Nano; 2016 Dec; 10(12):11266-11279. PubMed ID: 28024347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dark side of plasmonics.
    Gómez DE; Teo ZQ; Altissimo M; Davis TJ; Earl S; Roberts A
    Nano Lett; 2013 Aug; 13(8):3722-8. PubMed ID: 23802620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-Scanning-Guided Assembly of Quasi-3D Patterned Arrays of Plasmonic Dimers for Information Encryption.
    Yang F; Ye S; Dong W; Zheng D; Xia Y; Yi C; Tao J; Sun C; Zhang L; Wang L; Chen Q; Wang Y; Nie Z
    Adv Mater; 2021 Jun; 33(24):e2100325. PubMed ID: 33969563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized analytical model based on harmonic coupling for hybrid plasmonic modes: comparison with numerical and experimental results.
    Sarkar M; Bryche JF; Moreau J; Besbes M; Barbillon G; Bartenlian B; Canva M
    Opt Express; 2015 Oct; 23(21):27376-90. PubMed ID: 26480400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation of dark multipolar plasmonic resonances at terahertz frequencies.
    Chen L; Wei Y; Zang X; Zhu Y; Zhuang S
    Sci Rep; 2016 Feb; 6():22027. PubMed ID: 26903382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling light localization and light-matter interactions with nanoplasmonics.
    Giannini V; Fernández-Domínguez AI; Sonnefraud Y; Roschuk T; Fernández-García R; Maier SA
    Small; 2010 Nov; 6(22):2498-507. PubMed ID: 20878637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong confinement of gap modes induced by the film modified electric and magnetic modes in dielectric nanoparticle dimers.
    Shi J; Ju L; Zhang X; Huang Y; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 266():120465. PubMed ID: 34637984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design considerations for semiconductor nanowire-plasmonic nanoparticle coupled systems for high quantum efficiency nanowires.
    Mokkapati S; Saxena D; Tan HH; Jagadish C
    Small; 2013 Dec; 9(23):3964-9. PubMed ID: 23757173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-dimensional coupling of gold nanoparticle plasmons in self-assembled ring superstructures.
    Chang WS; Slaughter LS; Khanal BP; Manna P; Zubarev ER; Link S
    Nano Lett; 2009 Mar; 9(3):1152-7. PubMed ID: 19193117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.