These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 33408634)

  • 21. Ecto- and cytosolic 5'-nucleotidases in normal and AMP deaminase-deficient human skeletal muscle.
    Hanisch F; Hellsten Y; Zierz S
    Biol Chem; 2006 Jan; 387(1):53-8. PubMed ID: 16497164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzyme activities of purine catabolism and salvage in human muscle tissue.
    Schopf G; Havel M; Fasol R; Müller MM
    Adv Exp Med Biol; 1986; 195 Pt B():507-9. PubMed ID: 3020923
    [No Abstract]   [Full Text] [Related]  

  • 23. Inhibition of smooth muscle tension by cyclic AMP-dependent protein kinase.
    Kerrick WG; Hoar PE
    Nature; 1981 Jul; 292(5820):253-5. PubMed ID: 6265788
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alterations in AMP deaminase activity and kinetics in skeletal muscle of creatine kinase-deficient mice.
    Tullson PC; Rush JW; Wieringa B; Terjung RL
    Am J Physiol; 1998 May; 274(5):C1411-6. PubMed ID: 9612229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy-sensing and signaling by AMP-activated protein kinase in skeletal muscle.
    Winder WW
    J Appl Physiol (1985); 2001 Sep; 91(3):1017-28. PubMed ID: 11509493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation of glucose transport and AMP-activated protein kinase during muscle contraction in adenylate kinase-1 knockout mice.
    Zhang SJ; Sandström ME; Aydin J; Westerblad H; Wieringa B; Katz A
    Acta Physiol (Oxf); 2008 Mar; 192(3):413-20. PubMed ID: 17973952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AMP-deaminase and cytosolic 5'nucleotidase in human and murine lymphocyte subpopulations.
    Dornand J; Favero J; Mani JC
    Adv Exp Med Biol; 1986; 195 Pt B():391-8. PubMed ID: 3020913
    [No Abstract]   [Full Text] [Related]  

  • 28. Differential response of type I and type II cyclic AMP-dependent protein kinases in submandibular gland of isoproterenol-treated rats.
    Mizuno T; Iizuka K; Ikarashi A; Nohara H
    Arch Oral Biol; 1982; 27(7):589-95. PubMed ID: 6289787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AMP-activated protein kinase: possible target for treatment of type 2 diabetes.
    Winder WW
    Diabetes Technol Ther; 2000; 2(3):441-8. PubMed ID: 11467346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contraction-induced signaling: evidence of convergent cascades in the regulation of muscle fatty acid metabolism.
    Turcotte LP; Abbott MJ
    Can J Physiol Pharmacol; 2012 Nov; 90(11):1419-33. PubMed ID: 23181271
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emerging Role of Purine Metabolizing Enzymes in Brain Function and Tumors.
    Garcia-Gil M; Camici M; Allegrini S; Pesi R; Petrotto E; Tozzi MG
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30441833
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interplay between adenylate metabolizing enzymes and AMP-activated protein kinase.
    Camici M; Allegrini S; Tozzi MG
    FEBS J; 2018 Sep; 285(18):3337-3352. PubMed ID: 29775996
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzymes involved in purine metabolism--a review of histochemical localization and functional implications.
    Moriwaki Y; Yamamoto T; Higashino K
    Histol Histopathol; 1999 Oct; 14(4):1321-40. PubMed ID: 10506947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purine nucleotide cycle. Evidence for the occurrence of the cycle in brain.
    Schultz V; Lowenstein JM
    J Biol Chem; 1976 Jan; 251(2):485-92. PubMed ID: 1396
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross talk between beta-adrenergic and bradykinin B(2) receptors results in cooperative regulation of cyclic AMP accumulation and mitogen-activated protein kinase activity.
    Hanke S; Nürnberg B; Groll DH; Liebmann C
    Mol Cell Biol; 2001 Dec; 21(24):8452-60. PubMed ID: 11713280
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential activation of type-I and type-II adenosine 3':5'-cyclic monophosphate-dependent protein kinases in liver of glucagon-treated rats.
    Schwoch G
    Biochem J; 1978 Mar; 170(3):469-77. PubMed ID: 206261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of relaxation induced by activation of beta-adrenoceptors in smooth muscle cells of the guinea-pig mesenteric artery.
    Itoh T; Izumi H; Kuriyama H
    J Physiol; 1982 May; 326():475-93. PubMed ID: 6286950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The purine nucleotide cycle and its molecular defects.
    Van den Berghe G; Bontemps F; Vincent MF; Van den Bergh F
    Prog Neurobiol; 1992 Nov; 39(5):547-61. PubMed ID: 1529104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study of the substrate and inhibitor specificities of AMP aminohydrolase, 5'-nucleotidase, and adenylate kinase with adenosine carboxylates of variable chain length.
    Meyer W; Follmann H
    Z Naturforsch C Biosci; 1980; 35(3-4):273-8. PubMed ID: 6247859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle.
    Vavvas D; Apazidis A; Saha AK; Gamble J; Patel A; Kemp BE; Witters LA; Ruderman NB
    J Biol Chem; 1997 May; 272(20):13255-61. PubMed ID: 9148944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.