BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 33408793)

  • 1. Fully end-to-end deep-learning-based diagnosis of pancreatic tumors.
    Si K; Xue Y; Yu X; Zhu X; Li Q; Gong W; Liang T; Duan S
    Theranostics; 2021; 11(4):1982-1990. PubMed ID: 33408793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Usefulness of Deep Learning Analysis for the Diagnosis of Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas.
    Kuwahara T; Hara K; Mizuno N; Okuno N; Matsumoto S; Obata M; Kurita Y; Koda H; Toriyama K; Onishi S; Ishihara M; Tanaka T; Tajika M; Niwa Y
    Clin Transl Gastroenterol; 2019 May; 10(5):1-8. PubMed ID: 31117111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment and application of an artificial intelligence diagnosis system for pancreatic cancer with a faster region-based convolutional neural network.
    Liu SL; Li S; Guo YT; Zhou YP; Zhang ZD; Li S; Lu Y
    Chin Med J (Engl); 2019 Dec; 132(23):2795-2803. PubMed ID: 31856050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bounding box-based 3D AI model for user-guided volumetric segmentation of pancreatic ductal adenocarcinoma on standard-of-care CTs.
    Mukherjee S; Korfiatis P; Khasawneh H; Rajamohan N; Patra A; Suman G; Singh A; Thakkar J; Patnam NG; Trivedi KH; Karbhari A; Chari ST; Truty MJ; Halfdanarson TR; Bolan CW; Sandrasegaran K; Majumder S; Goenka AH
    Pancreatology; 2023 Aug; 23(5):522-529. PubMed ID: 37296006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmentation of pancreatic ductal adenocarcinoma (PDAC) and surrounding vessels in CT images using deep convolutional neural networks and texture descriptors.
    Mahmoudi T; Kouzahkanan ZM; Radmard AR; Kafieh R; Salehnia A; Davarpanah AH; Arabalibeik H; Ahmadian A
    Sci Rep; 2022 Feb; 12(1):3092. PubMed ID: 35197542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep neural network-based segmentation of normal and abnormal pancreas on abdominal CT: evaluation of global and local accuracies.
    Kawamoto S; Zhu Z; Chu LC; Javed AA; Kinny-Köster B; Wolfgang CL; Hruban RH; Kinzler KW; Fouladi DF; Blanco A; Shayesteh S; Fishman EK
    Abdom Radiol (NY); 2024 Feb; 49(2):501-511. PubMed ID: 38102442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Establishment and clinical testing of pancreatic cancer Faster R-CNN AI system based on fast regional convolutional neural network].
    Yang SJ; Lu Y; Zheng XF; Zhang YJ; Xin FJ; Sun P; Li Y; Liu SS; Li S; Guo YT; Liu SL
    Zhonghua Wai Ke Za Zhi; 2020 Jul; 58(7):520-524. PubMed ID: 32610422
    [No Abstract]   [Full Text] [Related]  

  • 8. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [CT diagnosis of intraductal papillary mucinous tumor of the pancreas].
    Wang DQ; Ji Y; Shi X; Rao SX; Ye T; Jin DY; Lou WH; Zeng MS
    Zhonghua Zhong Liu Za Zhi; 2006 Aug; 28(8):606-8. PubMed ID: 17236556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation.
    Liu KL; Wu T; Chen PT; Tsai YM; Roth H; Wu MS; Liao WC; Wang W
    Lancet Digit Health; 2020 Jun; 2(6):e303-e313. PubMed ID: 33328124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Branch duct-type intraductal papillary mucinous tumor: diagnostic value of multiplanar reformatted images in multislice CT.
    Takada A; Itoh S; Suzuki K; Iwano S; Satake H; Ota T; Ikeda M; Ishigaki T
    Eur Radiol; 2005 Sep; 15(9):1888-97. PubMed ID: 15765209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Artificial Intelligence Deep Learning to Determine the Malignant Potential of Pancreatic Cystic Neoplasms With Preoperative Computed Tomography Imaging.
    Watson MD; Lyman WB; Passeri MJ; Murphy KJ; Sarantou JP; Iannitti DA; Martinie JB; Vrochides D; Baker EH
    Am Surg; 2021 Apr; 87(4):602-607. PubMed ID: 33131302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Artificial Intelligence Model Trained on a Large Data Set Can Detect Pancreas Cancer on Diagnostic Computed Tomography Scans As Well As Visually Occult Preinvasive Cancer on Prediagnostic Computed Tomography Scans.
    Korfiatis P; Suman G; Patnam NG; Trivedi KH; Karbhari A; Mukherjee S; Cook C; Klug JR; Patra A; Khasawneh H; Rajamohan N; Fletcher JG; Truty MJ; Majumder S; Bolan CW; Sandrasegaran K; Chari ST; Goenka AH
    Gastroenterology; 2023 Dec; 165(6):1533-1546.e4. PubMed ID: 37657758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of techniques to improve a deep learning algorithm for the automatic detection of intracranial haemorrhage on CT head imaging.
    Yeo M; Tahayori B; Kok HK; Maingard J; Kutaiba N; Russell J; Thijs V; Jhamb A; Chandra RV; Brooks M; Barras CD; Asadi H
    Eur Radiol Exp; 2023 Apr; 7(1):17. PubMed ID: 37032417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporally downsampled cerebral CT perfusion image restoration using deep residual learning.
    Zhu H; Tong D; Zhang L; Wang S; Wu W; Tang H; Chen Y; Luo L; Zhu J; Li B
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):193-201. PubMed ID: 31673961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraductal papillary mucinous tumors and mucinous cystic tumors of the pancreas: imaging.
    Choe KA
    J Hepatobiliary Pancreat Surg; 2003; 10(2):137-41. PubMed ID: 14505146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation.
    Budak Ü; Guo Y; Tanyildizi E; Şengür A
    Med Hypotheses; 2020 Jan; 134():109431. PubMed ID: 31669758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset.
    Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W
    Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 18-fluorodeoxyglucose positron emission tomography enhances computed tomography diagnosis of malignant intraductal papillary mucinous neoplasms of the pancreas.
    Sperti C; Bissoli S; Pasquali C; Frison L; Liessi G; Chierichetti F; Pedrazzoli S
    Ann Surg; 2007 Dec; 246(6):932-7; discussion 937-9. PubMed ID: 18043094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CT virtual pancreatoscopy: a new method for diagnosing intraductal papillary mucinous neoplasm (IPMN) of the pancreas.
    Sata N; Kurihara K; Koizumi M; Tsukahara M; Yoshizawa K; Nagai H
    Abdom Imaging; 2006; 31(3):326-31. PubMed ID: 16333703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.