BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 33409153)

  • 1. Mitochondrial Bioenergetics at the Onset of Drug Resistance in Hematological Malignancies: An Overview.
    Barbato A; Scandura G; Puglisi F; Cambria D; La Spina E; Palumbo GA; Lazzarino G; Tibullo D; Di Raimondo F; Giallongo C; Romano A
    Front Oncol; 2020; 10():604143. PubMed ID: 33409153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Transfer and Regulators of Mesenchymal Stromal Cell Function and Therapeutic Efficacy.
    Mohammadalipour A; Dumbali SP; Wenzel PL
    Front Cell Dev Biol; 2020; 8():603292. PubMed ID: 33365311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting Mitochondrial Bioenergetics as a Therapeutic Strategy for Chronic Lymphocytic Leukemia.
    Roy Chowdhury S; Banerji V
    Oxid Med Cell Longev; 2018; 2018():2426712. PubMed ID: 29682155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A holistic view of cancer bioenergetics: mitochondrial function and respiration play fundamental roles in the development and progression of diverse tumors.
    Alam MM; Lal S; FitzGerald KE; Zhang L
    Clin Transl Med; 2016 Mar; 5(1):3. PubMed ID: 26812134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stromal cell-mediated mitochondrial redox adaptation regulates drug resistance in childhood acute lymphoblastic leukemia.
    Liu J; Masurekar A; Johnson S; Chakraborty S; Griffiths J; Smith D; Alexander S; Dempsey C; Parker C; Harrison S; Li Y; Miller C; Di Y; Ghosh Z; Krishnan S; Saha V
    Oncotarget; 2015 Dec; 6(40):43048-64. PubMed ID: 26474278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research Progress of Intercellular Mitochondrial Transfer in the Development of Hematological Malignant Tumors --Review].
    Zhang LY; Xiang YH; Zhang J
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2022 Feb; 30(1):310-313. PubMed ID: 35123645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organometallic nucleosides induce non-classical leukemic cell death that is mitochondrial-ROS dependent and facilitated by TCL1-oncogene burden.
    Prinz C; Vasyutina E; Lohmann G; Schrader A; Romanski S; Hirschhäuser C; Mayer P; Frias C; Herling CD; Hallek M; Schmalz HG; Prokop A; Mougiakakos D; Herling M
    Mol Cancer; 2015 Jun; 14():114. PubMed ID: 26041471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stromal Cells Serve Drug Resistance for Multiple Myeloma via Mitochondrial Transfer: A Study on Primary Myeloma and Stromal Cells.
    Matula Z; Mikala G; Lukácsi S; Matkó J; Kovács T; Monostori É; Uher F; Vályi-Nagy I
    Cancers (Basel); 2021 Jul; 13(14):. PubMed ID: 34298674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial transfer in hematological malignancies.
    Guo X; Can C; Liu W; Wei Y; Yang X; Liu J; Jia H; Jia W; Wu H; Ma D
    Biomark Res; 2023 Oct; 11(1):89. PubMed ID: 37798791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia.
    Jitschin R; Hofmann AD; Bruns H; Giessl A; Bricks J; Berger J; Saul D; Eckart MJ; Mackensen A; Mougiakakos D
    Blood; 2014 Apr; 123(17):2663-72. PubMed ID: 24553174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs.
    Ivanina AV; Nesmelova I; Leamy L; Sokolov EP; Sokolova IM
    J Exp Biol; 2016 Jun; 219(Pt 11):1659-74. PubMed ID: 27252455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD38-Driven Mitochondrial Trafficking Promotes Bioenergetic Plasticity in Multiple Myeloma.
    Marlein CR; Piddock RE; Mistry JJ; Zaitseva L; Hellmich C; Horton RH; Zhou Z; Auger MJ; Bowles KM; Rushworth SA
    Cancer Res; 2019 May; 79(9):2285-2297. PubMed ID: 30622116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting mitochondria in cancer: current concepts and immunotherapy approaches.
    Pustylnikov S; Costabile F; Beghi S; Facciabene A
    Transl Res; 2018 Dec; 202():35-51. PubMed ID: 30144423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the "reverse Warburg effect": a transcriptional informatics analysis with validation.
    Pavlides S; Tsirigos A; Vera I; Flomenberg N; Frank PG; Casimiro MC; Wang C; Fortina P; Addya S; Pestell RG; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2010 Jun; 9(11):2201-19. PubMed ID: 20519932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manganese (III) meso-tetrakis N-ethylpyridinium-2-yl porphyrin acts as a pro-oxidant to inhibit electron transport chain proteins, modulate bioenergetics, and enhance the response to chemotherapy in lymphoma cells.
    Jaramillo MC; Briehl MM; Batinic-Haberle I; Tome ME
    Free Radic Biol Med; 2015 Jun; 83():89-100. PubMed ID: 25725417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Mitochondria in Health and Disease.
    Herst PM; Rowe MR; Carson GM; Berridge MV
    Front Endocrinol (Lausanne); 2017; 8():296. PubMed ID: 29163365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ETHE1 and MOCS1 deficiencies: Disruption of mitochondrial bioenergetics, dynamics, redox homeostasis and endoplasmic reticulum-mitochondria crosstalk in patient fibroblasts.
    Grings M; Seminotti B; Karunanidhi A; Ghaloul-Gonzalez L; Mohsen AW; Wipf P; Palmfeldt J; Vockley J; Leipnitz G
    Sci Rep; 2019 Sep; 9(1):12651. PubMed ID: 31477743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-Adaptive Response in Ovarian Cancer Drug Resistance: Role of TRAP1 in Oxidative Metabolism-Driven Inflammation.
    Amoroso MR; Matassa DS; Agliarulo I; Avolio R; Maddalena F; Condelli V; Landriscina M; Esposito F
    Adv Protein Chem Struct Biol; 2017; 108():163-198. PubMed ID: 28427560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria.
    Ryoo IG; Kwak MK
    Toxicol Appl Pharmacol; 2018 Nov; 359():24-33. PubMed ID: 30236989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.