These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 33409646)
1. Tracking biological footprints of climate change using flowering phenology of the geophytes: Pancratium tenuifolium and Scadoxus multiflorus. Kwembeya EG Int J Biometeorol; 2021 Apr; 65(4):577-586. PubMed ID: 33409646 [TBL] [Abstract][Full Text] [Related]
2. Species-specific flowering phenology responses to experimental warming and drought alter herbaceous plant species overlap in a temperate-boreal forest community. Rice KE; Montgomery RA; Stefanski A; Rich RL; Reich PB Ann Bot; 2021 Jan; 127(2):203-211. PubMed ID: 32853366 [TBL] [Abstract][Full Text] [Related]
3. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community. Mulder CP; Iles DT; Rockwell RF Glob Chang Biol; 2017 Feb; 23(2):801-814. PubMed ID: 27273120 [TBL] [Abstract][Full Text] [Related]
4. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Butt N; Seabrook L; Maron M; Law BS; Dawson TP; Syktus J; McAlpine CA Glob Chang Biol; 2015 Sep; 21(9):3267-77. PubMed ID: 25605302 [TBL] [Abstract][Full Text] [Related]
5. Spring- and fall-flowering species show diverging phenological responses to climate in the Southeast USA. Pearson KD Int J Biometeorol; 2019 Apr; 63(4):481-492. PubMed ID: 30734127 [TBL] [Abstract][Full Text] [Related]
6. Opposite effects of daylength and temperature on flowering and summer dormancy of Poa bulbosa. Ofir M; Kigel J Ann Bot; 2006 Apr; 97(4):659-66. PubMed ID: 16467351 [TBL] [Abstract][Full Text] [Related]
7. Long-term increases in tropical flowering activity across growth forms in response to rising CO Pau S; Okamoto DK; Calderón O; Wright SJ Glob Chang Biol; 2018 May; 24(5):2105-2116. PubMed ID: 29265499 [TBL] [Abstract][Full Text] [Related]
8. Predicting the geographical distribution and niche characteristics of Huang Q; Liu H; Li C; Zhu X; Yuan Z; Lai J; Cao M; Huang Z; Yang Y; Zhuo S; Lü Z; Zhang G Front Plant Sci; 2024; 15():1360190. PubMed ID: 38779065 [TBL] [Abstract][Full Text] [Related]
9. Changing Climate Drives Divergent and Nonlinear Shifts in Flowering Phenology across Elevations. Rafferty NE; Diez JM; Bertelsen CD Curr Biol; 2020 Feb; 30(3):432-441.e3. PubMed ID: 31902725 [TBL] [Abstract][Full Text] [Related]
10. Will phenotypic plasticity affecting flowering phenology keep pace with climate change? Richardson BA; Chaney L; Shaw NL; Still SM Glob Chang Biol; 2017 Jun; 23(6):2499-2508. PubMed ID: 27739159 [TBL] [Abstract][Full Text] [Related]
11. A comparison of herbarium and citizen science phenology datasets for detecting response of flowering time to climate change in Denmark. Iwanycki Ahlstrand N; Primack RB; Tøttrup AP Int J Biometeorol; 2022 May; 66(5):849-862. PubMed ID: 35235036 [TBL] [Abstract][Full Text] [Related]
12. Historical changes in flowering phenology are governed by temperature × precipitation interactions in a widespread perennial herb in western North America. Matthews ER; Mazer SJ New Phytol; 2016 Apr; 210(1):157-67. PubMed ID: 26595165 [TBL] [Abstract][Full Text] [Related]
13. Earlier flowering between 1962 and 2002 in agricultural varieties of white clover. Williams TA; Abberton MT Oecologia; 2004 Jan; 138(1):122-6. PubMed ID: 14557866 [TBL] [Abstract][Full Text] [Related]
14. The transcriptional changes underlying the flowering phenology shift of Arabidopsis halleri in response to climate warming. Komoto H; Nagahama A; Miyawaki-Kuwakado A; Hata Y; Kyozuka J; Kajita Y; Toyama H; Satake A Plant Cell Environ; 2024 Jan; 47(1):174-186. PubMed ID: 37691326 [TBL] [Abstract][Full Text] [Related]
15. Phenological changes in olive (Ola europaea L.) reproductive cycle in southern Spain due to climate change. Garcia-Mozo H; Oteros J; Galan C Ann Agric Environ Med; 2015; 22(3):421-8. PubMed ID: 26403107 [TBL] [Abstract][Full Text] [Related]
16. A decade of flowering phenology of the keystone saguaro cactus (Carnegiea gigantea). Renzi JJ; Peachey WD; Gerst KL Am J Bot; 2019 Feb; 106(2):199-210. PubMed ID: 30791093 [TBL] [Abstract][Full Text] [Related]
17. Karyotypic features including organizations of the 5S, 45S rDNA loci and telomeres of Monkheang P; Chaveerach A; Sudmoon R; Tanee T Comp Cytogenet; 2016; 10(4):637-646. PubMed ID: 28123684 [No Abstract] [Full Text] [Related]
18. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming. Marchin RM; Salk CF; Hoffmann WA; Dunn RR Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981 [TBL] [Abstract][Full Text] [Related]
19. Changes in first flowering dates and flowering duration of 232 plant species on the island of Guernsey. Bock A; Sparks TH; Estrella N; Jee N; Casebow A; Schunk C; Leuchner M; Menzel A Glob Chang Biol; 2014 Nov; 20(11):3508-19. PubMed ID: 24639048 [TBL] [Abstract][Full Text] [Related]
20. Phylogenetic conservatism and climate factors shape flowering phenology in alpine meadows. Li L; Li Z; Cadotte MW; Jia P; Chen G; Jin LS; Du G Oecologia; 2016 Oct; 182(2):419-28. PubMed ID: 27351544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]