BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 33409934)

  • 1. Cytomolecular analysis of mutants, breeding lines, and varieties of camelina (Camelina sativa L. Crantz).
    Kwiatek MT; Drozdowska Z; Kurasiak-Popowska D; Noweiska A; Nawracała J
    J Appl Genet; 2021 May; 62(2):199-205. PubMed ID: 33409934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae.
    Hasterok R; Wolny E; Hosiawa M; Kowalczyk M; Kulak-Ksiazczyk S; Ksiazczyk T; Heneen WK; Maluszynska J
    Ann Bot; 2006 Feb; 97(2):205-16. PubMed ID: 16357054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing Diversity in the
    Chaudhary R; Koh CS; Kagale S; Tang L; Wu SW; Lv Z; Mason AS; Sharpe AG; Diederichsen A; Parkin IAP
    G3 (Bethesda); 2020 Apr; 10(4):1297-1308. PubMed ID: 32046969
    [No Abstract]   [Full Text] [Related]  

  • 4. Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis.
    Zhang ZT; Yang SQ; Li ZA; Zhang YX; Wang YZ; Cheng CY; Li J; Chen JF; Lou QF
    Genome; 2016 Jul; 59(7):449-57. PubMed ID: 27334092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping quantitative trait loci for seed traits in Camelina sativa.
    King K; Li H; Kang J; Lu C
    Theor Appl Genet; 2019 Sep; 132(9):2567-2577. PubMed ID: 31177293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetics of Camelina Crantz. (Brassicaceae) and insights on the origin of gold-of-pleasure (Camelina sativa).
    Brock JR; Dönmez AA; Beilstein MA; Olsen KM
    Mol Phylogenet Evol; 2018 Oct; 127():834-842. PubMed ID: 29933039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses.
    Ghamkhar K; Croser J; Aryamanesh N; Campbell M; Kon'kova N; Francis C
    Genome; 2010 Jul; 53(7):558-67. PubMed ID: 20616877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Camelina seed transcriptome: a tool for meal and oil improvement and translational research.
    Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB
    Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical mapping of rRNA genes in Medicago sativa and M. glomerata by fluorescent in situ hybridization.
    Falistocco E
    J Hered; 2000; 91(3):256-60. PubMed ID: 10833055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic dissection of natural variation in oilseed traits of camelina by whole-genome resequencing and QTL mapping.
    Li H; Hu X; Lovell JT; Grabowski PP; Mamidi S; Chen C; Amirebrahimi M; Kahanda I; Mumey B; Barry K; Kudrna D; Schmutz J; Lachowiec J; Lu C
    Plant Genome; 2021 Jul; 14(2):e20110. PubMed ID: 34106529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosomal localization of rDNA in the Brassicaceae.
    Ali HB; Lysak MA; Schubert I
    Genome; 2005 Apr; 48(2):341-6. PubMed ID: 15838557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes.
    Hutcheon C; Ditt RF; Beilstein M; Comai L; Schroeder J; Goldstein E; Shewmaker CK; Nguyen T; De Rocher J; Kiser J
    BMC Plant Biol; 2010 Oct; 10():233. PubMed ID: 20977772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the progeny produced by interspecific hybridization between Camelina sativa and C. microcarpa.
    Tepfer M; Hurel A; Tellier F; Jenczewski E
    Ann Bot; 2020 May; 125(6):993-1002. PubMed ID: 32055837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between genetics and environment shape Camelina seed oil composition.
    Brock JR; Scott T; Lee AY; Mosyakin SL; Olsen KM
    BMC Plant Biol; 2020 Sep; 20(1):423. PubMed ID: 32928104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative cytogenetic analysis of the genomes of the model grass Brachypodium distachyon and its close relatives.
    Wolny E; Hasterok R
    Ann Bot; 2009 Oct; 104(5):873-81. PubMed ID: 19633311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ectopic expression of cDNAs from larkspur (Consolida ajacis) for increased synthesis of gondoic acid (cis-11 eicosenoic acid) and its positional redistribution in seed triacylglycerol of Camelina sativa.
    Sarvas C; Puttick D; Forseille L; Cram D; Smith MA
    Planta; 2021 Jul; 254(2):32. PubMed ID: 34287699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady's slipper orchid.
    Lan T; Albert VA
    BMC Plant Biol; 2011 Sep; 11():126. PubMed ID: 21910890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Wide Identification and Expression Analysis of Fatty Acid Desaturase (
    Sun D; Quan W; Wang D; Cui J; Wang T; Lin M; Wang Y; Wang N; Dong Y; Li X; Liu W; Wang F
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36498878
    [No Abstract]   [Full Text] [Related]  

  • 19. Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae).
    Liu B; Davis TM
    BMC Plant Biol; 2011 Nov; 11():157. PubMed ID: 22074487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa.
    Hu Z; Wu Q; Dalal J; Vasani N; Lopez HO; Sederoff HW; Qu R
    PLoS One; 2017; 12(2):e0172296. PubMed ID: 28212406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.