BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 33410020)

  • 1. Mycoremediation of heavy metals: processes, mechanisms, and affecting factors.
    Kumar V; Dwivedi SK
    Environ Sci Pollut Res Int; 2021 Mar; 28(9):10375-10412. PubMed ID: 33410020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algae as a green technology for heavy metals removal from various wastewater.
    Salama ES; Roh HS; Dev S; Khan MA; Abou-Shanab RAI; Chang SW; Jeon BH
    World J Microbiol Biotechnol; 2019 May; 35(5):75. PubMed ID: 31053951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach.
    Bhat SA; Bashir O; Ul Haq SA; Amin T; Rafiq A; Ali M; Américo-Pinheiro JHP; Sher F
    Chemosphere; 2022 Sep; 303(Pt 1):134788. PubMed ID: 35504464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tolerance to heavy metals in filamentous fungi isolated from contaminated mining soils in the Zanjan Province, Iran.
    Mohammadian E; Babai Ahari A; Arzanlou M; Oustan S; Khazaei SH
    Chemosphere; 2017 Oct; 185():290-296. PubMed ID: 28700958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of heavy metals on the bioremediation of polycyclic aromatic hydrocarbons in aquatic system by a bacterial-fungal consortium.
    Ma XK; Li TT; Fam H; Charles Peterson E; Zhao WW; Guo W; Zhou B
    Environ Technol; 2018 Aug; 39(16):2128-2137. PubMed ID: 28678633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for chromium bioremediation of tannery effluent.
    Garg SK; Tripathi M; Srinath T
    Rev Environ Contam Toxicol; 2012; 217():75-140. PubMed ID: 22350558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioremediation potential of microalgae for sustainable soil treatment in India: A comprehensive review on heavy metal and pesticide contaminant removal.
    Yeheyo HA; Ealias AM; George G; Jagannathan U
    J Environ Manage; 2024 Jul; 363():121409. PubMed ID: 38861884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal assisted bio-treatment of environmental pollutants with comprehensive emphasis on noxious heavy metals: Recent updates.
    Chaurasia PK; Nagraj ; Sharma N; Kumari S; Yadav M; Singh S; Mani A; Yadava S; Bharati SL
    Biotechnol Bioeng; 2023 Jan; 120(1):57-81. PubMed ID: 36253930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth response and mycoremediation of heavy metals by fungus Pleurotus sp.
    Mohamadhasani F; Rahimi M
    Sci Rep; 2022 Nov; 12(1):19947. PubMed ID: 36402909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Overview of Morpho-Physiological, Biochemical, and Molecular Responses of Sorghum Towards Heavy Metal Stress.
    Mishra D; Kumar S; Mishra BN
    Rev Environ Contam Toxicol; 2021; 256():155-177. PubMed ID: 33866418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioremediation of hazardous heavy metals by marine microorganisms: a recent review.
    Alabssawy AN; Hashem AH
    Arch Microbiol; 2024 Feb; 206(3):103. PubMed ID: 38358529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies.
    Noor I; Sohail H; Sun J; Nawaz MA; Li G; Hasanuzzaman M; Liu J
    Chemosphere; 2022 Sep; 303(Pt 3):135196. PubMed ID: 35659937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential applications of extremophilic bacteria in the bioremediation of extreme environments contaminated with heavy metals.
    Sun J; He X; LE Y; Al-Tohamy R; Ali SS
    J Environ Manage; 2024 Feb; 352():120081. PubMed ID: 38237330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Utilization of Dead and Live Fungal Biomass for the Removal of Heavy Metal: A Concise Review.
    Ayele A; Haile S; Alemu D; Kamaraj M
    ScientificWorldJournal; 2021; 2021():5588111. PubMed ID: 33927581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Native fungi as metal remediators: Silver myco-accumulation from metal contaminated waste-rock dumps (Libiola Mine, Italy).
    Cecchi G; Marescotti P; Di Piazza S; Zotti M
    J Environ Sci Health B; 2017 Mar; 52(3):191-195. PubMed ID: 28121268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant growth and heavy meal accumulation characteristics of
    Liu K; Dai C; Li C; Hu J; Wang Z; Li Y; Yu F; Li G
    Int J Phytoremediation; 2023; 25(4):524-537. PubMed ID: 35790485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review.
    Abd Elnabi MK; Elkaliny NE; Elyazied MM; Azab SH; Elkhalifa SA; Elmasry S; Mouhamed MS; Shalamesh EM; Alhorieny NA; Abd Elaty AE; Elgendy IM; Etman AE; Saad KE; Tsigkou K; Ali SS; Kornaros M; Mahmoud YA
    Toxics; 2023 Jul; 11(7):. PubMed ID: 37505546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial strategies for copper pollution remediation: Mechanistic insights and recent advances.
    Alkhanjaf AAM; Sharma S; Sharma M; Kumar R; Arora NK; Kumar B; Umar A; Baskoutas S; Mukherjee TK
    Environ Pollut; 2024 Apr; 346():123588. PubMed ID: 38401635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach.
    Mandal RR; Bashir Z; Mandal JR; Raj D
    Environ Monit Assess; 2024 May; 196(6):502. PubMed ID: 38700594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.