BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33410059)

  • 1. Effect of the near-infrared activated photocatalyst Cu
    Asgodom ME; Liu D; Fu H; Xie H; Kong J
    Environ Sci Pollut Res Int; 2021 Apr; 28(16):20762-20771. PubMed ID: 33410059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth inhibition of bloom forming cyanobacterium Microcystis aeruginosa by green route fabricated copper oxide nanoparticles.
    Sankar R; Prasath BB; Nandakumar R; Santhanam P; Shivashangari KS; Ravikumar V
    Environ Sci Pollut Res Int; 2014 Dec; 21(24):14232-40. PubMed ID: 25074832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetically separable ZnFe
    Fan G; Lin X; You Y; Du B; Li X; Luo J
    J Hazard Mater; 2022 Jan; 421():126703. PubMed ID: 34315026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amination of cotton fiber using polyethyleneimine and its application as an adsorbent to directly remove a harmful cyanobacterial species, Microcystis aeruginosa, from an aqueous medium.
    Kim HS; Park YH; Nam K; Kim S; Choi YE
    Environ Res; 2021 Jun; 197():111235. PubMed ID: 33933491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorptive removal of harmful algal species Microcystis aeruginosa directly from aqueous solution using polyethylenimine coated polysulfone-biomass composite fiber.
    Kim S; Jeon MS; Kim JY; Sim SJ; Choi JS; Kwon J; Choi YE
    Biodegradation; 2018 Aug; 29(4):349-358. PubMed ID: 29943215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flocculating properties and potential of Halobacillus sp. strain H9 for the mitigation of Microcystis aeruginosa blooms.
    Zhang D; Ye Q; Zhang F; Shao X; Fan Y; Zhu X; Li Y; Yao L; Tian Y; Zheng T; Xu H
    Chemosphere; 2019 Mar; 218():138-146. PubMed ID: 30471494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allelopathic effect of pyrogallic acid on cyanobacterium Microcystis aeruginosa: The regulatory role of nitric oxide and its significance for controlling harmful algal blooms (HABs).
    He Y; Zhou Y; Zhou Z; He J; Liu Y; Xiao Y; Long L; Deng O; Xiao H; Shen F; Deng S; Luo L
    Sci Total Environ; 2023 Feb; 858(Pt 1):159785. PubMed ID: 36309262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a Novel Artemisinin Algicidal Particle and Its Inhibitory Effect on Microcystis aeruginosa.
    Ni L; Zhu C; Du C; Fang Y; Wang J; Li S
    Bull Environ Contam Toxicol; 2023 Apr; 110(5):82. PubMed ID: 37086296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of an algicidal bacterium indigenous to lake Taihu with a red pigment able to lyse microcystis aeruginosa.
    Yang F; Wei HY; Li XQ; Li YH; Li XB; Yin LH; Pu YP
    Biomed Environ Sci; 2013 Feb; 26(2):148-54. PubMed ID: 23336138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous removal of harmful algal cells and toxins by a Ag
    Fan G; Chen Z; Hong L; Du B; Yan Z; Zhan J; You Y; Ning R; Xiao H
    Sci Total Environ; 2020 Nov; 741():140341. PubMed ID: 32615428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxic and non-toxic strains of Microcystis aeruginosa induce temperature dependent allelopathy toward growth and photosynthesis of Chlorella vulgaris.
    Ma Z; Fang T; Thring RW; Li Y; Yu H; Zhou Q; Zhao M
    Harmful Algae; 2015 Sep; 48():21-29. PubMed ID: 29724472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth inhibition of Microcystis aeruginosa by white-rot fungus Lopharia spadicea.
    Wang Q; Su M; Zhu W; Li X; Jia Y; Guo P; Chen Z; Jiang W; Tian X
    Water Sci Technol; 2010; 62(2):317-23. PubMed ID: 20651435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combatting cyanobacteria: unraveling the potency of 316L-Cu stainless steel in inhibiting Microcystis aeruginosa growth.
    Hong H; Zhang X; Zhao J; Yang Y; Yang C; Yang K; Deng A; Wang F
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):1644-1653. PubMed ID: 38038922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Needle" hidden in silk floss: Inactivation effect and mechanism of melamine sponge loaded bismuth oxide composite copper-metal organic framework (MS/Bi
    Wang M; Chen J; Wei Y; Hu L; Xu Y; Liu Y; Wang R
    J Hazard Mater; 2024 Mar; 465():133273. PubMed ID: 38113729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of heterostructured Ag/AgCl@g-C
    Fan G; Zhan J; Luo J; Lin J; Qu F; Du B; You Y; Yan Z
    J Hazard Mater; 2021 Feb; 404(Pt B):124062. PubMed ID: 33068992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of low concentration of gallic acid on the growth and microcystin production of Microcystis aeruginosa.
    Luo Y; Dao G; Zhou G; Wang Z; Xu Z; Lu X; Pan X
    Sci Total Environ; 2024 Mar; 916():169765. PubMed ID: 38181948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome evolution and host-microbiome shifts correspond with intraspecific niche divergence within harmful algal bloom-forming Microcystis aeruginosa.
    Jackrel SL; White JD; Evans JT; Buffin K; Hayden K; Sarnelle O; Denef VJ
    Mol Ecol; 2019 Sep; 28(17):3994-4011. PubMed ID: 31344288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation Mechanism of Algal Chlorophyll by Allelochemical Quercetin.
    Li J; Yao Y; Hu X; Wang J; Yin L; Zhang Y; Ni L; Li S; Zhu F
    Bull Environ Contam Toxicol; 2022 Sep; 109(3):450-458. PubMed ID: 35437706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic insight for algicidal activity in Rhizobium strain AQ_MP.
    Pal M; Purohit HJ; Qureshi A
    Arch Microbiol; 2021 Oct; 203(8):5193-5203. PubMed ID: 34341843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning photocatalytic performance of the near-infrared-driven photocatalyst Cu2(OH)PO4 based on effective mass and dipole moment.
    Li Z; Dai Y; Ma X; Zhu Y; Huang B
    Phys Chem Chem Phys; 2014 Feb; 16(7):3267-73. PubMed ID: 24413259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.