These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 33410126)

  • 21. Life cycle assessment of microalgal biorefinery: A state-of-the-art review.
    Ubando AT; Anderson S Ng E; Chen WH; Culaba AB; Kwon EE
    Bioresour Technol; 2022 Sep; 360():127615. PubMed ID: 35840032
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Waste biorefineries - integrating anaerobic digestion and microalgae cultivation for bioenergy production.
    Chen YD; Ho SH; Nagarajan D; Ren NQ; Chang JS
    Curr Opin Biotechnol; 2018 Apr; 50():101-110. PubMed ID: 29227859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Can Omics Approaches Improve Microalgal Biofuels under Abiotic Stress?
    Salama ES; Govindwar SP; Khandare RV; Roh HS; Jeon BH; Li X
    Trends Plant Sci; 2019 Jul; 24(7):611-624. PubMed ID: 31085124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advancements of microalgal upstream technologies: Bioengineering and application aspects in the paradigm of circular bioeconomy.
    Leong WH; Rawindran H; Ameen F; Alam MM; Chai YH; Ho YC; Lam MK; Lim JW; Tong WY; Bashir MJK; Ravindran B; Alsufi NA
    Chemosphere; 2023 Oct; 339():139699. PubMed ID: 37532206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous harvesting of microalgae by new microfluidic technology for particle separation.
    Hønsvall BK; Altin D; Robertson LJ
    Bioresour Technol; 2016 Jan; 200():360-5. PubMed ID: 26512859
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Harvesting microalgae via flocculation: a review].
    Wan C; Zhang X; Zhao X; Bai F
    Sheng Wu Gong Cheng Xue Bao; 2015 Feb; 31(2):161-71. PubMed ID: 26062338
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock.
    Weschler MK; Barr WJ; Harper WF; Landis AE
    Bioresour Technol; 2014 Feb; 153():108-15. PubMed ID: 24355501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio-Based Chemicals.
    Ng IS; Tan SI; Kao PH; Chang YK; Chang JS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28786539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Holistic Approach to Managing Microalgae for Biofuel Applications.
    Show PL; Tang MS; Nagarajan D; Ling TC; Ooi CW; Chang JS
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selection, breeding and engineering of microalgae for bioenergy and biofuel production.
    Larkum AW; Ross IL; Kruse O; Hankamer B
    Trends Biotechnol; 2012 Apr; 30(4):198-205. PubMed ID: 22178650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microalgae-based carbohydrates: A green innovative source of bioenergy.
    de Carvalho Silvello MA; Severo Gonçalves I; Patrícia Held Azambuja S; Silva Costa S; Garcia Pereira Silva P; Oliveira Santos L; Goldbeck R
    Bioresour Technol; 2022 Jan; 344(Pt B):126304. PubMed ID: 34752879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microalgal cultivation with biogas slurry for biofuel production.
    Zhu L; Yan C; Li Z
    Bioresour Technol; 2016 Nov; 220():629-636. PubMed ID: 27599623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidics in Biotechnology: Overview and Status Quo.
    Bahnemann J; Grünberger A
    Adv Biochem Eng Biotechnol; 2022; 179():1-16. PubMed ID: 35333948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyanobacteria and microalgae: a positive prospect for biofuels.
    Parmar A; Singh NK; Pandey A; Gnansounou E; Madamwar D
    Bioresour Technol; 2011 Nov; 102(22):10163-72. PubMed ID: 21924898
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A droplet microfluidics platform for rapid microalgal growth and oil production analysis.
    Kim HS; Guzman AR; Thapa HR; Devarenne TP; Han A
    Biotechnol Bioeng; 2016 Aug; 113(8):1691-701. PubMed ID: 26724784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent biotechnological developments in reshaping the microalgal genome: A signal for green recovery in biorefinery practices.
    Singh M; Mal N; Mohapatra R; Bagchi T; Parambath SD; Chavali M; Rao KM; Ramanaiah SV; Kadier A; Kumar G; Chandrasekhar K; Kim SH
    Chemosphere; 2022 Apr; 293():133513. PubMed ID: 34990720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compounds.
    Li J; Liu Y; Cheng JJ; Mos M; Daroch M
    N Biotechnol; 2015 Dec; 32(6):588-96. PubMed ID: 25686716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advancements in mixotrophic bioprocessing for production of high value microalgal products.
    Patel AK; Singhania RR; Sim SJ; Dong CD
    Bioresour Technol; 2021 Jan; 320(Pt B):124421. PubMed ID: 33246239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds.
    Mehariya S; Goswami RK; Karthikeysan OP; Verma P
    Chemosphere; 2021 Oct; 280():130553. PubMed ID: 33940454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Algae biorefinery: Review on a broad spectrum of downstream processes and products.
    Khoo CG; Dasan YK; Lam MK; Lee KT
    Bioresour Technol; 2019 Nov; 292():121964. PubMed ID: 31451339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.