These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 33410201)
1. The utility of the Laplace effect size prior distribution in Bayesian fine-mapping studies. Walters K; Cox A; Yaacob H Genet Epidemiol; 2021 Jun; 45(4):386-401. PubMed ID: 33410201 [TBL] [Abstract][Full Text] [Related]
2. Bayesian multivariant fine mapping using the Laplace prior. Walters K; Yaacob H Genet Epidemiol; 2023 Apr; 47(3):249-260. PubMed ID: 36739616 [TBL] [Abstract][Full Text] [Related]
3. Using GWAS top hits to inform priors in Bayesian fine-mapping association studies. Walters K; Cox A; Yaacob H Genet Epidemiol; 2019 Sep; 43(6):675-689. PubMed ID: 31286571 [TBL] [Abstract][Full Text] [Related]
4. Incorporating Functional Genomic Information in Genetic Association Studies Using an Empirical Bayes Approach. Spencer AV; Cox A; Lin WY; Easton DF; Michailidou K; Walters K Genet Epidemiol; 2016 Apr; 40(3):176-87. PubMed ID: 26833494 [TBL] [Abstract][Full Text] [Related]
5. Improving the coverage of credible sets in Bayesian genetic fine-mapping. Hutchinson A; Watson H; Wallace C PLoS Comput Biol; 2020 Apr; 16(4):e1007829. PubMed ID: 32282791 [TBL] [Abstract][Full Text] [Related]
6. Bayesian variable selection using partially observed categorical prior information in fine-mapping association studies. Alenazi AA; Cox A; Juarez M; Lin WY; Walters K Genet Epidemiol; 2019 Sep; 43(6):690-703. PubMed ID: 31298427 [TBL] [Abstract][Full Text] [Related]
7. Hierarchical joint analysis of marginal summary statistics-Part I: Multipopulation fine mapping and credible set construction. Shen J; Jiang L; Wang K; Wang A; Chen F; Newcombe PJ; Haiman CA; Conti DV Genet Epidemiol; 2024 Sep; 48(6):241-257. PubMed ID: 38606643 [TBL] [Abstract][Full Text] [Related]
8. CARMA is a new Bayesian model for fine-mapping in genome-wide association meta-analyses. Yang Z; Wang C; Liu L; Khan A; Lee A; Vardarajan B; Mayeux R; Kiryluk K; Ionita-Laza I Nat Genet; 2023 Jun; 55(6):1057-1065. PubMed ID: 37169873 [TBL] [Abstract][Full Text] [Related]
9. A Bayesian fine-mapping model using a continuous global-local shrinkage prior with applications in prostate cancer analysis. Li X; Sham PC; Zhang YD Am J Hum Genet; 2024 Feb; 111(2):213-226. PubMed ID: 38171363 [TBL] [Abstract][Full Text] [Related]
10. Re-ranking sequencing variants in the post-GWAS era for accurate causal variant identification. Faye LL; Machiela MJ; Kraft P; Bull SB; Sun L PLoS Genet; 2013; 9(8):e1003609. PubMed ID: 23950724 [TBL] [Abstract][Full Text] [Related]
11. Genetic associations at regulatory phenotypes improve fine-mapping of causal variants for 12 immune-mediated diseases. Kundu K; Tardaguila M; Mann AL; Watt S; Ponstingl H; Vasquez L; Von Schiller D; Morrell NW; Stegle O; Pastinen T; Sawcer SJ; Anderson CA; Walter K; Soranzo N Nat Genet; 2022 Mar; 54(3):251-262. PubMed ID: 35288711 [TBL] [Abstract][Full Text] [Related]
12. Multiple SNP Set Analysis for Genome-Wide Association Studies Through Bayesian Latent Variable Selection. Lu ZH; Zhu H; Knickmeyer RC; Sullivan PF; Williams SN; Zou F; Genet Epidemiol; 2015 Dec; 39(8):664-77. PubMed ID: 26515609 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies. Hoggart CJ; Whittaker JC; De Iorio M; Balding DJ PLoS Genet; 2008 Jul; 4(7):e1000130. PubMed ID: 18654633 [TBL] [Abstract][Full Text] [Related]
14. A latent model for prioritization of SNPs for functional studies. Fridley BL; Iversen E; Tsai YY; Jenkins GD; Goode EL; Sellers TA PLoS One; 2011; 6(6):e20764. PubMed ID: 21687685 [TBL] [Abstract][Full Text] [Related]
15. SNP prioritization using a Bayesian probability of association. Thompson JR; Gögele M; Weichenberger CX; Modenese M; Attia J; Barrett JH; Boehnke M; De Grandi A; Domingues FS; Hicks AA; Marroni F; Pattaro C; Ruggeri F; Borsani G; Casari G; Parmigiani G; Pastore A; Pfeufer A; Schwienbacher C; Taliun D; ; Fox CS; Pramstaller PP; Minelli C Genet Epidemiol; 2013 Feb; 37(2):214-21. PubMed ID: 23280596 [TBL] [Abstract][Full Text] [Related]
16. Novel bayes factors that capture expert uncertainty in prior density specification in genetic association studies. Spencer AV; Cox A; Lin WY; Easton DF; Michailidou K; Walters K Genet Epidemiol; 2015 May; 39(4):239-48. PubMed ID: 25727067 [TBL] [Abstract][Full Text] [Related]
17. A Statistical Approach to Fine Mapping for the Identification of Potential Causal Variants Related to Bone Mineral Density. Greenbaum J; Deng HW J Bone Miner Res; 2017 Aug; 32(8):1651-1658. PubMed ID: 28425624 [TBL] [Abstract][Full Text] [Related]
18. Bayesian statistical methods in genetic association studies: Empirical examination of statistically non-significant Genome Wide Association Study (GWAS) meta-analyses in cancers: A systematic review. Park JH; Geum DI; Eisenhut M; van der Vliet HJ; Shin JI Gene; 2019 Feb; 685():170-178. PubMed ID: 30416053 [TBL] [Abstract][Full Text] [Related]
19. Comparing the efficacy of SNP filtering methods for identifying a single causal SNP in a known association region. Spencer AV; Cox A; Walters K Ann Hum Genet; 2014 Jan; 78(1):50-61. PubMed ID: 24205929 [TBL] [Abstract][Full Text] [Related]
20. A multi-trait Bayesian method for mapping QTL and genomic prediction. Kemper KE; Bowman PJ; Hayes BJ; Visscher PM; Goddard ME Genet Sel Evol; 2018 Mar; 50(1):10. PubMed ID: 29571285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]