These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 33410201)
21. Improving fine-mapping by modeling infinitesimal effects. Cui R; Elzur RA; Kanai M; Ulirsch JC; Weissbrod O; Daly MJ; Neale BM; Fan Z; Finucane HK Nat Genet; 2024 Jan; 56(1):162-169. PubMed ID: 38036779 [TBL] [Abstract][Full Text] [Related]
22. Fine Mapping Causal Variants with an Approximate Bayesian Method Using Marginal Test Statistics. Chen W; Larrabee BR; Ovsyannikova IG; Kennedy RB; Haralambieva IH; Poland GA; Schaid DJ Genetics; 2015 Jul; 200(3):719-36. PubMed ID: 25948564 [TBL] [Abstract][Full Text] [Related]
23. A statistical approach to fine-mapping for the identification of potential causal variants related to human intelligence. Gong Y; Greenbaum J; Deng HW J Hum Genet; 2019 Aug; 64(8):781-787. PubMed ID: 31165785 [TBL] [Abstract][Full Text] [Related]
24. Bayesian statistical methods for genetic association studies. Stephens M; Balding DJ Nat Rev Genet; 2009 Oct; 10(10):681-90. PubMed ID: 19763151 [TBL] [Abstract][Full Text] [Related]
25. A note on the efficiencies of sampling strategies in two-stage Bayesian regional fine mapping of a quantitative trait. Chen Z; Craiu RV; Bull SB Genet Epidemiol; 2014 Nov; 38(7):599-609. PubMed ID: 25132153 [TBL] [Abstract][Full Text] [Related]
26. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances. Su G; Christensen OF; Janss L; Lund MS J Dairy Sci; 2014 Oct; 97(10):6547-59. PubMed ID: 25129495 [TBL] [Abstract][Full Text] [Related]
27. Weighted single-step genomic best linear unbiased prediction integrating variants selected from sequencing data by association and bioinformatics analyses. Liu A; Lund MS; Boichard D; Karaman E; Guldbrandtsen B; Fritz S; Aamand GP; Nielsen US; Sahana G; Wang Y; Su G Genet Sel Evol; 2020 Aug; 52(1):48. PubMed ID: 32799816 [TBL] [Abstract][Full Text] [Related]
29. Inferring gene network from candidate SNP association studies using a Bayesian graphical model: application to a breast cancer case-control study from ontario. Kang S; Savas S; Ozcelik H; Briollais L Hum Hered; 2014; 78(3-4):140-52. PubMed ID: 25342289 [TBL] [Abstract][Full Text] [Related]
30. Leveraging genetic variability across populations for the identification of causal variants. Zaitlen N; Paşaniuc B; Gur T; Ziv E; Halperin E Am J Hum Genet; 2010 Jan; 86(1):23-33. PubMed ID: 20085711 [TBL] [Abstract][Full Text] [Related]
31. Bayes factors for genome-wide association studies: comparison with P-values. Wakefield J Genet Epidemiol; 2009 Jan; 33(1):79-86. PubMed ID: 18642345 [TBL] [Abstract][Full Text] [Related]
32. A fine-mapping study of central obesity loci incorporating functional annotation and imputation. Zhang X; Cupples LA; Liu CT Eur J Hum Genet; 2018 Sep; 26(9):1369-1377. PubMed ID: 29967334 [TBL] [Abstract][Full Text] [Related]
33. Identification of novel common breast cancer risk variants at the 6q25 locus among Latinas. Hoffman J; Fejerman L; Hu D; Huntsman S; Li M; John EM; Torres-Mejia G; Kushi L; Ding YC; Weitzel J; Neuhausen SL; Lott P; ; Echeverry M; Carvajal-Carmona L; Burchard E; Eng C; Long J; Zheng W; Olopade O; Huo D; Haiman C; Ziv E Breast Cancer Res; 2019 Jan; 21(1):3. PubMed ID: 30642363 [TBL] [Abstract][Full Text] [Related]
34. A Bayesian generalized log-normal model to dynamically evaluate the distribution of pesticide residues in soil associated with population health risks. Li Z Environ Int; 2018 Dec; 121(Pt 1):620-634. PubMed ID: 30312965 [TBL] [Abstract][Full Text] [Related]
35. Finding type 2 diabetes causal single nucleotide polymorphism combinations and functional modules from genome-wide association data. Kang C; Yu H; Yi GS BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S3. PubMed ID: 23566118 [TBL] [Abstract][Full Text] [Related]
36. Probabilistic prioritization of candidate pathway association with pathway score. Lin SJ; Lu TP; Yu QY; Hsiao CK BMC Bioinformatics; 2018 Oct; 19(1):391. PubMed ID: 30355338 [TBL] [Abstract][Full Text] [Related]
37. On fitting spatio-temporal disease mapping models using approximate Bayesian inference. Ugarte MD; Adin A; Goicoa T; Militino AF Stat Methods Med Res; 2014 Dec; 23(6):507-30. PubMed ID: 24713158 [TBL] [Abstract][Full Text] [Related]
38. Genome-wide association of lipid-lowering response to statins in combined study populations. Barber MJ; Mangravite LM; Hyde CL; Chasman DI; Smith JD; McCarty CA; Li X; Wilke RA; Rieder MJ; Williams PT; Ridker PM; Chatterjee A; Rotter JI; Nickerson DA; Stephens M; Krauss RM PLoS One; 2010 Mar; 5(3):e9763. PubMed ID: 20339536 [TBL] [Abstract][Full Text] [Related]
39. On the use of whole-genome sequence data for across-breed genomic prediction and fine-scale mapping of QTL. Meuwissen T; van den Berg I; Goddard M Genet Sel Evol; 2021 Feb; 53(1):19. PubMed ID: 33637049 [TBL] [Abstract][Full Text] [Related]
40. eQuIPS: eQTL Analysis Using Informed Partitioning of SNPs - A Fully Bayesian Approach. Boggis EM; Milo M; Walters K Genet Epidemiol; 2016 May; 40(4):273-83. PubMed ID: 26989050 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]