These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 33410201)

  • 41. Bayesian analysis of genome-wide inflammatory bowel disease data sets reveals new risk loci.
    Zhang Y; Tian L; Sleiman P; Ghosh S; Hakonarson H;
    Eur J Hum Genet; 2018 Feb; 26(2):265-274. PubMed ID: 29203833
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome and Posterior Probability of Mortality Benefit in a Post Hoc Bayesian Analysis of a Randomized Clinical Trial.
    Goligher EC; Tomlinson G; Hajage D; Wijeysundera DN; Fan E; Jüni P; Brodie D; Slutsky AS; Combes A
    JAMA; 2018 Dec; 320(21):2251-2259. PubMed ID: 30347031
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improved estimation of SNP heritability using Bayesian multiple-phenotype models.
    Elhezzani NS
    Eur J Hum Genet; 2018 May; 26(5):723-734. PubMed ID: 29440776
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estimation of genomic breeding values using the Horseshoe prior.
    Pong-Wong R
    BMC Proc; 2014; 8(Suppl 5):S6. PubMed ID: 25519520
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluating the Performance of Fine-Mapping Strategies at Common Variant GWAS Loci.
    van de Bunt M; Cortes A; ; Brown MA; Morris AP; McCarthy MI
    PLoS Genet; 2015; 11(9):e1005535. PubMed ID: 26406328
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiple breast cancer risk variants are associated with differential transcript isoform expression in tumors.
    Caswell JL; Camarda R; Zhou AY; Huntsman S; Hu D; Brenner SE; Zaitlen N; Goga A; Ziv E
    Hum Mol Genet; 2015 Dec; 24(25):7421-31. PubMed ID: 26472073
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Probabilistic fine-mapping of transcriptome-wide association studies.
    Mancuso N; Freund MK; Johnson R; Shi H; Kichaev G; Gusev A; Pasaniuc B
    Nat Genet; 2019 Apr; 51(4):675-682. PubMed ID: 30926970
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-throughput identification, database storage and analysis of SNPs in EST sequences.
    Useche FJ; Gao G; Harafey M; Rafalski A
    Genome Inform; 2001; 12():194-203. PubMed ID: 11791238
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genome-wide association analyses using a Bayesian approach for litter size and piglet mortality in Danish Landrace and Yorkshire pigs.
    Guo X; Su G; Christensen OF; Janss L; Lund MS
    BMC Genomics; 2016 Jun; 17():468. PubMed ID: 27317562
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Bayesian framework for SNP identification.
    Webb-Robertson BM; Havre SL; Payne DA
    Pac Symp Biocomput; 2005; ():421-32. PubMed ID: 15759647
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inclusion of biological knowledge in a Bayesian shrinkage model for joint estimation of SNP effects.
    Pereira M; Thompson JR; Weichenberger CX; Thomas DC; Minelli C
    Genet Epidemiol; 2017 May; 41(4):320-331. PubMed ID: 28393391
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluating variations of genotype calling: a potential source of spurious associations in genome-wide association studies.
    Hong H; Su Z; Ge W; Shi L; Perkins R; Fang H; Mendrick D; Tong W
    J Genet; 2010 Apr; 89(1):55-64. PubMed ID: 20505247
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bayesian multiple logistic regression for case-control GWAS.
    Banerjee S; Zeng L; Schunkert H; Söding J
    PLoS Genet; 2018 Dec; 14(12):e1007856. PubMed ID: 30596640
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A pleiotropy-informed Bayesian false discovery rate adapted to a shared control design finds new disease associations from GWAS summary statistics.
    Liley J; Wallace C
    PLoS Genet; 2015 Feb; 11(2):e1004926. PubMed ID: 25658688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inferring Alcoholism SNPs and Regulatory Chemical Compounds Based on Ensemble Bayesian Network.
    Chen H; Sun J; Jiang H; Wang X; Wu L; Wu W; Wang Q
    Comb Chem High Throughput Screen; 2017; 20(2):107-115. PubMed ID: 28000566
    [TBL] [Abstract][Full Text] [Related]  

  • 56. BAYSIC: a Bayesian method for combining sets of genome variants with improved specificity and sensitivity.
    Cantarel BL; Weaver D; McNeill N; Zhang J; Mackey AJ; Reese J
    BMC Bioinformatics; 2014 Apr; 15():104. PubMed ID: 24725768
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantifying posterior effect size distribution of susceptibility loci by common summary statistics.
    Vsevolozhskaya OA; Zaykin DV
    Genet Epidemiol; 2020 Jun; 44(4):339-351. PubMed ID: 32100375
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome-wide association analysis and genomic prediction of Mycobacterium avium subspecies paratuberculosis infection in US Jersey cattle.
    Zare Y; Shook GE; Collins MT; Kirkpatrick BW
    PLoS One; 2014; 9(2):e88380. PubMed ID: 24523889
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Integrating molecular QTL data into genome-wide genetic association analysis: Probabilistic assessment of enrichment and colocalization.
    Wen X; Pique-Regi R; Luca F
    PLoS Genet; 2017 Mar; 13(3):e1006646. PubMed ID: 28278150
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hierarchical Bayes prioritization of marker associations from a genome-wide association scan for further investigation.
    Lewinger JP; Conti DV; Baurley JW; Triche TJ; Thomas DC
    Genet Epidemiol; 2007 Dec; 31(8):871-82. PubMed ID: 17654612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.