These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3341050)

  • 21. The metabolism and disposition of hexachloro-1:3-butadiene in the rat and its relevance to nephrotoxicity.
    Nash JA; King LJ; Lock EA; Green T
    Toxicol Appl Pharmacol; 1984 Mar; 73(1):124-37. PubMed ID: 6710510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regucalcin down-regulation in rat kidney tissue after treatment with nephrotoxicants.
    Chiusolo A; Defazio R; Casartelli A; Bocchini N; Mongillo M; Zanetti E; Cristofori P; Trevisan A
    Toxicol Lett; 2008 Nov; 182(1-3):84-90. PubMed ID: 18805471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury sulfides are much less nephrotoxic than mercury chloride and methylmercury in mice.
    Liu J; Lu YF; Li WK; Zhou ZP; Li YY; Yang X; Li C; Du YZ; Wei LX
    Toxicol Lett; 2016 Nov; 262():153-160. PubMed ID: 27720909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hexachloro-1:3-butadiene-induced renal tubular necrosis in the mouse.
    Ishmael J; Pratt I; Lock EA
    J Pathol; 1984 Mar; 142(3):195-203. PubMed ID: 6707786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of ascorbic acid, acivicin and probenecid on the nephrotoxicity of 4-aminophenol in the Fischer 344 rat.
    Fowler LM; Foster JR; Lock EA
    Arch Toxicol; 1993; 67(9):613-21. PubMed ID: 8311688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subacute (4-wk) oral toxicity of a combination of four nephrotoxins in rats: comparison with the toxicity of the individual compounds.
    Jonker D; Woutersen RA; van Bladeren PJ; Til HP; Feron VJ
    Food Chem Toxicol; 1993 Feb; 31(2):125-36. PubMed ID: 8449457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The nephrotoxicity of hexachloro-1:3-butadiene in the rat: studies of organic anion and cation transport in renal slices and the effect of monooxygenase inducers.
    Hook JB; Rose MS; Lock EA
    Toxicol Appl Pharmacol; 1982 Sep; 65(3):373-82. PubMed ID: 7157370
    [No Abstract]   [Full Text] [Related]  

  • 28. Binding of hexachlorobutadiene to alpha 2u-globulin and its role in nephrotoxicity in rats.
    Pähler A; Birner G; Ott MM; Dekant W
    Toxicol Appl Pharmacol; 1997 Dec; 147(2):372-80. PubMed ID: 9439732
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity.
    Enomoto A; Takeda M; Tojo A; Sekine T; Cha SH; Khamdang S; Takayama F; Aoyama I; Nakamura S; Endou H; Niwa T
    J Am Soc Nephrol; 2002 Jul; 13(7):1711-20. PubMed ID: 12089366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of age and sex on hexachloro-1,3-butadiene toxicity in the Fischer 344 rat.
    Kuo CH; Hook JB
    Life Sci; 1983 Aug; 33(6):517-23. PubMed ID: 6888181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of inhibitors and substrates on methyl mercury uptake by rat erythrocytes.
    Wu G
    Arch Toxicol; 1995; 69(8):533-9. PubMed ID: 8534196
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Routes for renal transport of methylmercury in mice.
    Tanaka T; Naganuma A; Imura N
    Eur J Pharmacol; 1992 May; 228(1):9-14. PubMed ID: 1397070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolism of hexachloro-1,3-butadiene in mice: in vivo and in vitro evidence for activation by glutathione conjugation.
    Dekant W; Schrenk D; Vamvakas S; Henschler D
    Xenobiotica; 1988 Jul; 18(7):803-16. PubMed ID: 3176519
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probenecid protects against In vivo acetaminophen-induced nephrotoxicity in male Wistar rats.
    Trumper L; Monasterolo LA; Elías MM
    J Pharmacol Exp Ther; 1998 Feb; 284(2):606-10. PubMed ID: 9454804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acetaminophen nephrotoxicity in the CD-1 mouse. II. Protection by probenecid and AT-125 without diminution of renal covalent binding.
    Emeigh Hart SG; Wyand DS; Khairallah EA; Cohen SD
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):161-9. PubMed ID: 8560470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of renal cysteine conjugate beta-lyase in the mechanism of compound A nephrotoxicity in rats.
    Kharasch ED; Thorning D; Garton K; Hankins DC; Kilty CG
    Anesthesiology; 1997 Jan; 86(1):160-71. PubMed ID: 9009951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of organic anion transporter 1 (OAT1) in cephaloridine (CER)-induced nephrotoxicity.
    Takeda M; Tojo A; Sekine T; Hosoyamada M; Kanai Y; Endou H
    Kidney Int; 1999 Dec; 56(6):2128-36. PubMed ID: 10594788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationship between the transport and toxicity of cephalosporins in the kidney.
    Tune BM
    J Infect Dis; 1975 Aug; 132(2):189-94. PubMed ID: 1159324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of oral probenecid coadministration on the chronic toxicity and pharmacokinetics of intravenous cidofovir in cynomolgus monkeys.
    Lacy SA; Hitchcock MJ; Lee WA; Tellier P; Cundy KC
    Toxicol Sci; 1998 Aug; 44(2):97-106. PubMed ID: 9742650
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developed resistance to mercuric chloride nephrotoxicity: failure to protect against other nephrotoxicants.
    Kluwe WM
    Toxicol Lett; 1982 Jun; 12(1):19-25. PubMed ID: 6214047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.