These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33411061)

  • 21. Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons.
    Zhang C; Marvinney CE; Xu HY; Liu WZ; Wang CL; Zhang LX; Wang JN; Ma JG; Liu YC
    Nanoscale; 2015 Jan; 7(3):1073-80. PubMed ID: 25475883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface-plasmon-enhanced visible-light emission of ZnO/Ag grating structures.
    Gwon M; Lee E; Kim DW; Yee KJ; Lee MJ; Kim YS
    Opt Express; 2011 Mar; 19(7):5895-901. PubMed ID: 21451614
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Ag Thin Films on the Photoluminescence of ZnO Films.
    Han F; Yang S; Jing W; Wang L; Lei L; Jiang Z; Ga F
    J Nanosci Nanotechnol; 2015 May; 15(5):3796-801. PubMed ID: 26505007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Significant enhancement of yellow-green light emission of ZnO nanorod arrays using Ag island films.
    Lin CA; Tsai DS; Chen CY; He JH
    Nanoscale; 2011 Mar; 3(3):1195-9. PubMed ID: 21258696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing the UV Emission in ZnO-CNT Hybrid Nanostructures via the Surface Plasmon Resonance of Ag Nanoparticles.
    Rauwel P; Galeckas A; Rauwel E
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33579049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmon-mediated photocatalytic activity of wet-chemically prepared ZnO nanowire arrays.
    Dao TD; Han G; Arai N; Nabatame T; Wada Y; Hoang CV; Aono M; Nagao T
    Phys Chem Chem Phys; 2015 Mar; 17(11):7395-403. PubMed ID: 25700130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays.
    Henson J; Dimakis E; DiMaria J; Li R; Minissale S; Dal Negro L; Moustakas TD; Paiella R
    Opt Express; 2010 Sep; 18(20):21322-9. PubMed ID: 20941028
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergistic effects of SPR and FRET on the photoluminescence of ZnO nanorod heterostructures.
    Chang JY; Kim TG; Sung YM
    Nanotechnology; 2011 Oct; 22(42):425708. PubMed ID: 21946036
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing UV-emissions through optical and electronic dual-function tuning of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes.
    Yao YC; Yang ZP; Hwang JM; Chuang YL; Lin CC; Haung JY; Chou CY; Sheu JK; Tsai MT; Lee YJ
    Nanoscale; 2016 Feb; 8(8):4463-74. PubMed ID: 26852753
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ag-nanoparticle-decorated Ge nanocap arrays protruding from porous anodic aluminum oxide as sensitive and reproducible surface-enhanced Raman scattering substrates.
    Liu J; Meng G; Li X; Huang Z
    Langmuir; 2014 Nov; 30(46):13964-9. PubMed ID: 25361441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-angle ZnO microstructures grown on Ag nanorods array for plasmon-enhanced near-UV-blue light emitter.
    Pal AK; Mohan DB
    Nanotechnology; 2017 Oct; 28(41):415707. PubMed ID: 28704205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multifunctional ZnO/Ag nanorod array as highly sensitive substrate for surface enhanced Raman detection.
    Shan G; Zheng S; Chen S; Chen Y; Liu Y
    Colloids Surf B Biointerfaces; 2012 Jun; 94():157-62. PubMed ID: 22341990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Close-packed two-dimensional silver nanoparticle arrays: quadrupolar and dipolar surface plasmon resonance coupling.
    Yun S; Hong S; Acapulco JA; Jang HY; Ham S; Lee K; Kim SK; Park S
    Chemistry; 2015 Apr; 21(16):6165-72. PubMed ID: 25739448
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Broad-band-enhanced plasmonic random laser in silver nanostar arrays.
    Liu F; Xin X; Chang S; Liang N; Cui L; Zhai T
    Opt Express; 2024 May; 32(10):18247-18256. PubMed ID: 38858986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced photoluminescence of nonpolar p-type ZnO film by surface plasmon resonance and electron transfer.
    Chen S; Pan X; He H; Chen W; Chen C; Dai W; Zhang H; Ding P; Huang J; Lu B; Ye Z
    Opt Lett; 2015 Feb; 40(4):649-52. PubMed ID: 25680172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface plasmon resonance induced enhancement of photoluminescence and Raman line intensity in SnS quantum dot-Sn nanoparticle hybrid structure.
    Warrier AR; Gandhimathi R
    Methods Appl Fluoresc; 2018 Apr; 6(3):035009. PubMed ID: 29633725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of ZnO:Tb down-conversion phosphor for Ag nanoparticle plasmon absorption using a He-Cd ultraviolet laser.
    Abbass AE; Swart HC; Kroon RE
    Luminescence; 2016 Sep; 31(6):1182-6. PubMed ID: 26768796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of localized surface plasmons on the photoluminescence properties of Au-coated ZnO films.
    Zhang Y; Li X; Ren X
    Opt Express; 2009 May; 17(11):8735-40. PubMed ID: 19466122
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatially-Controllable Hot Spots for Plasmon-Enhanced Second-Harmonic Generation in AgNP-ZnO Nanocavity Arrays.
    Shen S; Gao M; Ban R; Chen H; Wang X; Qian L; Li J; Yang Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30563152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays.
    Dai ZG; Xiao XH; Zhang YP; Ren F; Wu W; Zhang SF; Zhou J; Mei F; Jiang CZ
    Nanotechnology; 2012 Aug; 23(33):335701. PubMed ID: 22842646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.