BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33411298)

  • 1. ASPEN PLUS desulfurization simulations for the scrubber of a large-scale marine diesel engine: main scrubbing section's desulfurization share optimization and superiority confirmation for the seawater/seawater cascade-scrubbing solution.
    Wu S; Kuang M; Zhao M; Yang G; Geng X; Hu X; Huang J
    Environ Sci Pollut Res Int; 2021 May; 28(17):22131-22145. PubMed ID: 33411298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation investigation on marine exhaust gas SO
    Li W; Zhang Y; Zhao Z; Liu C; Wang Y; Shen M; Dai H; Yang Y; Zheng C; Gao X
    J Air Waste Manag Assoc; 2022 May; 72(5):383-402. PubMed ID: 34874231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combustion and emission characteristics for a marine low-speed diesel engine with high-pressure SCR system.
    Zhu Y; Xia C; Shreka M; Wang Z; Yuan L; Zhou S; Feng Y; Hou Q; Ahmed SA
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):12851-12865. PubMed ID: 30734255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental investigation on NOx and green house gas emissions from a marine auxiliary diesel engine using ultralow sulfur light fuel.
    Geng P; Tan Q; Zhang C; Wei L; He X; Cao E; Jiang K
    Sci Total Environ; 2016 Dec; 572():467-475. PubMed ID: 27544351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of seawater scrubbing on a microplanktonic community during a summer-bloom in the Baltic Sea.
    Ytreberg E; Karlberg M; Hassellöv IM; Hedblom M; Nylund AT; Salo K; Imberg H; Turner D; Tripp L; Yong J; Wulff A
    Environ Pollut; 2021 Dec; 291():118251. PubMed ID: 34592329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental policy constraints for acidic exhaust gas scrubber discharges from ships.
    Ülpre H; Eames I
    Mar Pollut Bull; 2014 Nov; 88(1-2):292-301. PubMed ID: 25284442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical Characteristics of Particle Emissions from a Medium Speed Ship Engine Fueled with Natural Gas and Low-Sulfur Liquid Fuels.
    Alanen J; Isotalo M; Kuittinen N; Simonen P; Martikainen S; Kuuluvainen H; Honkanen M; Lehtoranta K; Nyyssönen S; Vesala H; Timonen H; Aurela M; Keskinen J; Rönkkö T
    Environ Sci Technol; 2020 May; 54(9):5376-5384. PubMed ID: 32250108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.
    Johnson DR; Bedick CR; Clark NN; McKain DL
    Environ Sci Technol; 2009 May; 43(10):3959-63. PubMed ID: 19544914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method of pH-buffered NaClO
    Gong P; Li C; Li X
    Environ Sci Pollut Res Int; 2020 May; 27(14):16963-16971. PubMed ID: 32146665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Desulfurization of Diesel Using Ionic Liquids: Process Design and Optimization Using COSMO-Based Models and Aspen Plus.
    Ben Salah H; Nancarrow P; Al Othman A
    ACS Omega; 2023 Aug; 8(33):30001-30023. PubMed ID: 37636952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on removing marine multiple pollutants in raw exhaust gas with a novel composited method combined with pre-agglomeration and wet scrubbing technology.
    Zhou J; Jiang G
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):47262-47273. PubMed ID: 36738418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of fuel types and fuel sulfur content on the characteristics of particulate emissions in marine low-speed diesel engine.
    Shen F; Li X
    Environ Sci Pollut Res Int; 2020 Oct; 27(30):37229-37236. PubMed ID: 31893360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous removal of SO
    Li G; Wang B; Xu WQ; Li Y; Han Y; Sun Q
    Environ Technol; 2019 Aug; 40(20):2620-2632. PubMed ID: 29558318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation to meet China II emission legislation for marine diesel engine with diesel methanol compound combustion technology.
    Wang H; Yao A; Yao C; Wang B; Wu T; Chen C
    J Environ Sci (China); 2020 Oct; 96():99-108. PubMed ID: 32819704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method for reduction of the NO
    Puškár M; Kopas M; Puškár D; Lumnitzer J; Faltinová E
    Mar Pollut Bull; 2018 Feb; 127():752-760. PubMed ID: 28847635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotube-like materials in the exhaust from a diesel engine using gas oil/ethanol mixing fuel with catalysts and sulfur.
    Suzuki S; Mori S
    J Air Waste Manag Assoc; 2017 Aug; 67(8):873-880. PubMed ID: 28278030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Onboard measurements of nanoparticles from a SCR-equipped marine diesel engine.
    Hallquist ÅM; Fridell E; Westerlund J; Hallquist M
    Environ Sci Technol; 2013 Jan; 47(2):773-80. PubMed ID: 23163334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diesel engines: environmental impact and control.
    Lloyd AC; Cackette TA
    J Air Waste Manag Assoc; 2001 Jun; 51(6):809-47. PubMed ID: 11417675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic seawater flue gas desulfurization model.
    Vidal Barrero F; Ollero P; Villanueva Perales AL; Gómez-Barea A
    Environ Sci Technol; 2009 Dec; 43(24):9393-9. PubMed ID: 20000534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of organosulfur content on diesel fuel stability and implications for carbon steel corrosion.
    Lyles CN; Aktas DF; Duncan KE; Callaghan AV; Stevenson BS; Suflita JM
    Environ Sci Technol; 2013 Jun; 47(11):6052-62. PubMed ID: 23614475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.