BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33411536)

  • 1. Biocontainment of Engineered
    Lee HJ; Choi JI; Woo HM
    J Agric Food Chem; 2021 Jan; 69(2):698-703. PubMed ID: 33411536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Conversion of CO
    Lee HJ; Lee J; Lee SM; Um Y; Kim Y; Sim SJ; Choi JI; Woo HM
    J Agric Food Chem; 2017 Dec; 65(48):10424-10428. PubMed ID: 29068210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary Engineering of Cyanobacteria to Enhance the Production of α-Farnesene from CO
    Pattharaprachayakul N; Lee HJ; Incharoensakdi A; Woo HM
    J Agric Food Chem; 2019 Dec; 67(49):13658-13664. PubMed ID: 31755253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthetic production of α-farnesene by engineered Synechococcus elongatus UTEX 2973 from carbon dioxide.
    Rautela A; Yadav I; Gangwar A; Chatterjee R; Kumar S
    Bioresour Technol; 2024 Mar; 396():130432. PubMed ID: 38346593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable Cultivation of Engineered Cyanobacteria for Squalene Production from Industrial Flue Gas in a Closed Photobioreactor.
    Choi SY; Sim SJ; Ko SC; Son J; Lee JS; Lee HJ; Chang WS; Woo HM
    J Agric Food Chem; 2020 Sep; 68(37):10050-10055. PubMed ID: 32851842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Carbon Fixation, Distribution and Storage on the Production of Farnesene and Limonene in
    Vincent M; Blanc-Garin V; Chenebault C; Cirimele M; Farci S; Garcia-Alles LF; Cassier-Chauvat C; Chauvat F
    Int J Mol Sci; 2024 Mar; 25(7):. PubMed ID: 38612633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carboxysome Mispositioning Alters Growth, Morphology, and Rubisco Level of the Cyanobacterium Synechococcus elongatus PCC 7942.
    Rillema R; Hoang Y; MacCready JS; Vecchiarelli AG
    mBio; 2021 Aug; 12(4):e0269620. PubMed ID: 34340540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-CO
    Clark RL; Gordon GC; Bennett NR; Lyu H; Root TW; Pfleger BF
    ACS Synth Biol; 2018 Feb; 7(2):384-391. PubMed ID: 29320853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetically engineering cyanobacteria to convert CO₂, water, and light into the long-chain hydrocarbon farnesene.
    Halfmann C; Gu L; Gibbons W; Zhou R
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9869-77. PubMed ID: 25301585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition.
    Chwa JW; Kim WJ; Sim SJ; Um Y; Woo HM
    Plant Biotechnol J; 2016 Aug; 14(8):1768-76. PubMed ID: 26879003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic CO
    Lee HJ; Choi J; Lee SM; Um Y; Sim SJ; Kim Y; Woo HM
    J Agric Food Chem; 2017 Feb; 65(6):1087-1092. PubMed ID: 28128561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942.
    Lan EI; Chuang DS; Shen CR; Lee AM; Ro SY; Liao JC
    Metab Eng; 2015 Sep; 31():163-70. PubMed ID: 26278506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward solar biodiesel production from CO2 using engineered cyanobacteria.
    Woo HM; Lee HJ
    FEMS Microbiol Lett; 2017 May; 364(9):. PubMed ID: 28407086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of Squalene Production from CO
    Choi SY; Wang JY; Kwak HS; Lee SM; Um Y; Kim Y; Sim SJ; Choi JI; Woo HM
    ACS Synth Biol; 2017 Jul; 6(7):1289-1295. PubMed ID: 28365988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Synechococcus elongatus for photoautotrophic production of mannitol.
    Pritam P; Sarnaik AP; Wangikar PP
    Biotechnol Bioeng; 2023 Aug; 120(8):2363-2370. PubMed ID: 37387320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a novel d-lactate producing pathway from dihydroxyacetone phosphate of the Calvin cycle in cyanobacterium, Synechococcus elongatus PCC 7942.
    Hirokawa Y; Goto R; Umetani Y; Hanai T
    J Biosci Bioeng; 2017 Jul; 124(1):54-61. PubMed ID: 28325659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Features and Biochemical Characteristics of a Robust, Fast Growing and Naturally Transformable Cyanobacterium Synechococcus elongatus PCC 11801 Isolated from India.
    Jaiswal D; Sengupta A; Sohoni S; Sengupta S; Phadnavis AG; Pakrasi HB; Wangikar PP
    Sci Rep; 2018 Nov; 8(1):16632. PubMed ID: 30413737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced stable production of ethylene in photosynthetic cyanobacterium Synechococcus elongatus PCC 7942.
    Carbonell V; Vuorio E; Aro EM; Kallio P
    World J Microbiol Biotechnol; 2019 May; 35(5):77. PubMed ID: 31069553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol.
    Li H; Liao JC
    Microb Cell Fact; 2013 Jan; 12():4. PubMed ID: 23339487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Cyanobacterium Synechococcus elongatus PCC 11802 has Distinct Genomic and Metabolomic Characteristics Compared to its Neighbor PCC 11801.
    Jaiswal D; Sengupta A; Sengupta S; Madhu S; Pakrasi HB; Wangikar PP
    Sci Rep; 2020 Jan; 10(1):191. PubMed ID: 31932622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.