These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33411749)

  • 1. Identifying differences in gait adaptability across various speeds using movement synergy analysis.
    Ó'Reilly D; Federolf P
    PLoS One; 2021; 16(1):e0244582. PubMed ID: 33411749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow walking synergies reveal a functional role for arm swing asymmetry in healthy adults: A principal component analysis with relation to mechanical work.
    Ó' Reilly D
    Gait Posture; 2021 Mar; 85():126-130. PubMed ID: 33549966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower limb angular velocity during walking at various speeds.
    Mentiplay BF; Banky M; Clark RA; Kahn MB; Williams G
    Gait Posture; 2018 Sep; 65():190-196. PubMed ID: 30558929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive quantitative investigation of arm swing during walking at various speed and surface slope conditions.
    Hejrati B; Chesebrough S; Bo Foreman K; Abbott JJ; Merryweather AS
    Hum Mov Sci; 2016 Oct; 49():104-15. PubMed ID: 27367784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking.
    Ducharme SW; Liddy JJ; Haddad JM; Busa MA; Claxton LJ; van Emmerik REA
    Hum Mov Sci; 2018 Apr; 58():248-259. PubMed ID: 29505917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slower than normal walking speeds involve a pattern shift in joint and temporal coordination contributions.
    Little VL; McGuirk TE; Patten C
    Exp Brain Res; 2019 Nov; 237(11):2973-2982. PubMed ID: 31511954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenging gait leads to stronger lower-limb kinematic synergies: The effects of walking within a more narrow pathway.
    Rosenblatt NJ; Latash ML; Hurt CP; Grabiner MD
    Neurosci Lett; 2015 Jul; 600():110-4. PubMed ID: 26003449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speed-related but not detrended gait variability increases with more sensitive self-paced treadmill controllers at multiple slopes.
    Castano CR; Huang HJ
    PLoS One; 2021; 16(5):e0251229. PubMed ID: 33961654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Movement smoothness in chronic post-stroke individuals walking in an outdoor environment-A cross-sectional study using IMU sensors.
    Garcia FDV; da Cunha MJ; Schuch CP; Schifino GP; Balbinot G; Pagnussat AS
    PLoS One; 2021; 16(4):e0250100. PubMed ID: 33886640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of walking speeds on lower extremity kinematic synergy in toe vertical position control: An experimental study.
    Liu X; Liang J; Liu Y
    Medicine (Baltimore); 2024 May; 103(18):e38024. PubMed ID: 38701268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal and kinematic characteristics of gait initiation across a wide speed range.
    Stansfield B; Hawkins K; Adams S; Church D
    Gait Posture; 2018 Mar; 61():331-338. PubMed ID: 29427858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Varying Overground Walking Speeds on Lower-Extremity Muscle Synergies in Healthy Individuals.
    Escalona MJ; Bourbonnais D; Goyette M; Le Flem D; Duclos C; Gagnon DH
    Motor Control; 2021 Jan; 25(2):234-251. PubMed ID: 33503586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the lower limb inter-segmental coordination during walking between healthy controls and people with multiple sclerosis with and without fall history.
    Salehi R; Mofateh R; Mehravar M; Negahban H; Tajali S; Monjezi S
    Mult Scler Relat Disord; 2020 Jun; 41():102053. PubMed ID: 32203931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncontrolled manifold hypothesis: Organization of leg joint variance in humans while walking in a wide range of speeds.
    Monaco V; Tropea P; Rinaldi LA; Micera S
    Hum Mov Sci; 2018 Feb; 57():227-235. PubMed ID: 28939197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.
    Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K
    Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of gait speed on the body's center of mass motion relative to the center of pressure during over-ground walking.
    Lu HL; Kuo MY; Chang CF; Lu TW; Hong SW
    Hum Mov Sci; 2017 Aug; 54():354-362. PubMed ID: 28688302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A prediction method of speed-dependent walking patterns for healthy individuals.
    Fukuchi CA; Duarte M
    Gait Posture; 2019 Feb; 68():280-284. PubMed ID: 30551054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mediolateral footpath stabilization during walking in people following stroke.
    Kao PC; Srivastava S
    PLoS One; 2018; 13(11):e0208120. PubMed ID: 30496257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.