These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33411819)

  • 1. Motor control characteristics of upper limbs in response to assistive forces during bilateral tasks.
    Wang Y; Loh PY; Muraki S
    PLoS One; 2021; 16(1):e0245049. PubMed ID: 33411819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in Muscle Activity in Response to Assistive Force during Isometric Elbow Flexion.
    Loh PY; Hayashi K; Nasir N; Muraki S
    J Mot Behav; 2020; 52(5):634-642. PubMed ID: 31571525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetries of bilateral isometric force matching with movement intention and unilateral fatigue.
    Gueugnon M; Torre K; Mottet D; Bonnetblanc F
    Exp Brain Res; 2014 Jun; 232(6):1699-706. PubMed ID: 24553753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of mechanical assistance on muscle activity and motor performance during isometric elbow flexion.
    Choi J; Yeoh WL; Matsuura S; Loh PY; Muraki S
    J Electromyogr Kinesiol; 2020 Feb; 50():102380. PubMed ID: 31841884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximal isometric force and neural activity during bilateral and unilateral elbow flexion in humans.
    Oda S; Moritani T
    Eur J Appl Physiol Occup Physiol; 1994; 69(3):240-3. PubMed ID: 8001536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force and electromyography responses during isometric force release of different rates and step-down magnitudes.
    Choi J; Yeoh WL; Loh PY; Muraki S
    Hum Mov Sci; 2019 Oct; 67():102516. PubMed ID: 31539754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilateral multifinger deficits in symmetric key-pressing tasks.
    Li ZM; Zatsiorsky VM; Li S; Danion F; Latash ML
    Exp Brain Res; 2001 Sep; 140(1):86-94. PubMed ID: 11500801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural coupling between homologous muscles during bimanual tasks: effects of visual and somatosensory feedback.
    Nguyen HB; Lee SW; Harris-Love ML; Lum PS
    J Neurophysiol; 2017 Feb; 117(2):655-664. PubMed ID: 27852730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks.
    Sergio LE; Hamel-Pâquet C; Kalaska JF
    J Neurophysiol; 2005 Oct; 94(4):2353-78. PubMed ID: 15888522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects.
    Pirondini E; Coscia M; Marcheschi S; Roas G; Salsedo F; Frisoli A; Bergamasco M; Micera S
    J Neuroeng Rehabil; 2016 Jan; 13():9. PubMed ID: 26801620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower limb force production and bilateral force asymmetries are based on sense of effort.
    Simon AM; Ferris DP
    Exp Brain Res; 2008 May; 187(1):129-38. PubMed ID: 18251017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bilateral movements increase sustained extensor force in the paretic arm.
    Kang N; Cauraugh JH
    Disabil Rehabil; 2018 Apr; 40(8):912-916. PubMed ID: 28637125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigating the bilateral deficit: reducing neural deficits through residual force enhancement and activation reduction.
    MacDonald GZ; Mazara N; Herzog W; Power GA
    Eur J Appl Physiol; 2018 Sep; 118(9):1911-1919. PubMed ID: 29959517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle activation of the elbow flexor and extensor muscles during self-resistance exercises: comparison of unilateral maximal cocontraction and bilateral self-resistance.
    Serrau V; Driss T; Vandewalle H; Behm DG; Lesne-Chabran E; Le Pellec-Muller A
    J Strength Cond Res; 2012 Sep; 26(9):2468-77. PubMed ID: 22027855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knee extensors neuromuscular fatigue changes the corticospinal pathway excitability in biceps brachii muscle.
    Aboodarda SJ; Šambaher N; Millet GY; Behm DG
    Neuroscience; 2017 Jan; 340():477-486. PubMed ID: 27826108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and kinematic effects of a soft exosuit on arm movements.
    Xiloyannis M; Chiaradia D; Frisoli A; Masia L
    J Neuroeng Rehabil; 2019 Feb; 16(1):29. PubMed ID: 30791919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor unit activity in biceps brachii of left-handed humans during sustained contractions with two load types.
    Gould JR; Cleland BT; Mani D; Amiridis IG; Enoka RM
    J Neurophysiol; 2016 Sep; 116(3):1358-65. PubMed ID: 27334949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of mechanical compression due to load carrying on shoulder muscle fatigue during sustained isometric arm abduction: an electromyographic study.
    Piscione J; Gamet D
    Eur J Appl Physiol; 2006 Jul; 97(5):573-81. PubMed ID: 16767438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle activation and force production during bilateral and unilateral concentric and isometric contractions of the knee extensors in men and women at different ages.
    Häkkinen K; Kraemer WJ; Newton RU
    Electromyogr Clin Neurophysiol; 1997; 37(3):131-42. PubMed ID: 9187864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in central control of m. biceps brachii in movement tasks and force tasks.
    Tax AA; Denier van der Gon JJ; Gielen CC; Kleyne M
    Exp Brain Res; 1990; 79(1):138-42. PubMed ID: 2311690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.